• Title/Summary/Keyword: Block search

Search Result 555, Processing Time 0.025 seconds

Adaptive Matching Scan Algorithm Based on Gradient Magnitude and Sub-blocks in Fast Motion Estimation of Full Search (전영역 탐색의 고속 움직임 예측에서 기울기 크기와 부 블록을 이용한 적응 매칭 스캔 알고리즘)

  • 김종남;최태선
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1097-1100
    • /
    • 1999
  • Due to the significant computation of full search in motion estimation, extensive research in fast motion estimation algorithms has been carried out. However, most of the algorithms have the degradation in predicted images compared with the full search algorithm. To reduce an amount of significant computation while keeping the same prediction quality of the full search, we propose a fast block-matching algorithm based on gradient magnitude of reference block without any degradation of predicted image. By using Taylor series expansion, we show that the block matching errors between reference block and candidate block are proportional to the gradient magnitude of matching block. With the derived result, we propose fast full search algorithm with adaptively determined scan direction in the block matching. Experimentally, our proposed algorithm is very efficient in terms of computational speedup and has the smallest computation among all the conventional full search algorithms. Therefore, our algorithm is useful in VLSI implementation of video encoder requiring real-time application.

  • PDF

An Adaptive Motion Estimation Technique Using Temporal Continuity of Motion

  • Park, Jung-Hyun;Lee, Kyeong-Hwan;Kim, Duk-Gyoo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.7-10
    • /
    • 2000
  • Fast block motion estimation technique is proposed to reduce the computational complexity in video coding. In the conventional methods the size of search region is fixed. For small motion regions like background the small size of sea of search region is enough to find a block motion. But for active motion regions the large size of search region is preferred to figure out the accurate motion vector. Therefore, it is reasonable that a block motion is estimated in the variable search region (both the size and the position of it). That is to say, the search region varies according to the predicted motion characteristics of a block. The block motion in video frames has temporal continuity and then the search region of a current block is predicted using the block motion of previous blocks. The computational complexity of the proposed technique is significantly reduced with a good picture quality compared to the conventional methods.

  • PDF

A New Block Matching Motion Estimation using Predicted Direction Search Algorithm (예측 방향성 탐색 알고리즘을 이용한 새로운 블록 정합 움직임 추정 방식)

  • Seo, Jae-Su;Nam, Jae-Yeol;Gwak, Jin-Seok;Lee, Myeong-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2S
    • /
    • pp.638-648
    • /
    • 2000
  • This paper introduces a new technique for block is matching motion estimation. Since the temporal correlation of the image sequence, the motion vector of a block is highly related to the motion vector of the same coordinate block in the previous image frame. If we can obtain useful and enough information from the motion vector of the same coordinate block of the previous frame, the total number of search points used to find the motion vector of the current block may be reduced significantly. Using that idea, an efficient predicted direction search algorithm (PDSA) for block matching algorithm is proposed. Based on the direction of the blocks of the two successive previous frames, if the direction of the to successive blocks is same, the first search point of the proposed PDSA is moved two pixels to the direction of the block. The searching process after moving the first search point is processed according to the fixed search patterns. Otherwise, full search is performed with search area $\pm$2. Simulation results show that PSNR values are improved up to the 3.4dB as depend on the image sequences and improved about 1.5dB on an average. Search times are reduced about 20% than the other fast search algorithms. Simulation results also show that the performance of the PDSA scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS(Full Search) algorithm.

  • PDF

Optimal Search Patterns for Fast Block Matching Motion Estimation (고속 블록정합 움직임 추정을 위한 최적의 탐색 패턴)

  • 임동근;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.39-42
    • /
    • 2000
  • Motion estimation plays an important role for video coding. In this paper, we derive optimal search patterns for fast block matching motion estimation. By analyzing the block matching algorithm as a function of block shape and size, we can find an optimal search pattern for initial motion estimation. The proposed idea, which has been verified experimentally by computer simulations, can provide an analytical basis for the current MPEG-2 proposals. In order to choose a more compact search pattern for BMA, we exploit the statistical relationship between the motion and the frame difference of each block.

  • PDF

Block Interpolation Search (블록 보간 탐색법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.157-163
    • /
    • 2017
  • The binary and interpolation search algorithms are the most famous among search area algorithms, the former running in $O(log_2n)$ on average, and the latter in $O(log_2log_2n)$ on average and O(n) at worst. Also, the interpolation search use only the probability of key value location without priori information. This paper proposes another search algorithm, which I term a 'hybrid block and interpolation search'. This algorithm employs the block search, a method by which MSB index of a data is determined as a block, and the interpolation search to find the exact location of the key. The proposed algorithm reduces the search range with priori information and search the reduced range with uninformed situation. Experimental results show that the algorithm has a time complexity of $O(log_2log_2n_i)$, $n_i{\simeq}0.1n$ both on average and at worst through utilization of previously acquired information on the block search. The proposed algorithm has proved to be approximately 10 times faster than the interpolation search on average.

A New Block-based Gradient Descent Search Algorithm for a Fast Block Matching (고속 블록 정합을 위한 새로운 블록 기반 경사 하강 탐색 알고리즘)

  • 곽성근
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.10
    • /
    • pp.731-740
    • /
    • 2003
  • Since motion estimation remove the redundant data to employ the temporal correlations between adjacent frames in a video sequence, it plays an important role in digital video coding. And in the block matching algorithm, search patterns of different shapes or sizes and the distribution of motion vectors have a large impact on both the searching speed and the image quality. In this paper, we propose a new fast block matching algorithm using the small-cross search pattern and the block-based gradient descent search pattern. Our algorithm first finds the motion vectors that are close to the center of search window using the small-cross search pattern, and then quickly finds the other motion vectors that are not close to the center of search window using the block-based gradient descent search pattern. Through experiments, compared with the block-based gradient descent search algorithm(BBGDS), the proposed search algorithm improves as high as 26-40% in terms of average number of search point per motion vector estimation.

  • PDF

A Systolic Array for High-Speed Computing of Full Search Block Matching Algorithm

  • Jung, Soon-Ho;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1275-1286
    • /
    • 2011
  • This paper proposes a high speed systolic array architecture for full search block matching algorithm (FBMA). The pixels of the search area for a reference block are input only one time to find the matched candidate block and reused to compute the sum of absolute difference (SAD) for the adjacent candidate blocks. Each row of designed 2-dimensional systolic array compares the reference block with the adjacent blocks of the same row in search area. The lower rows of the designed array get the pixels from the upper row and compute the SAD with reusing the overlapped pixels of the candidate blocks within same column of the search area. This designed array has no data broadcasting and global paths. The comparison with existing architectures shows that this array is superior in terms of throughput through it requires a little more hardware.

A New Cross and Hexagonal Search Algorithm for Fast Block Matching Motion Estimation (십자와 육각패턴을 이용한 고속 블록 정합 동작 예측 기법)

  • Park, In-Young;Nam, Hyeon-Woo;Wee, Young-Cheul;Kim, Ha-Jine
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.811-814
    • /
    • 2003
  • In this paper, we propose a fast block-matching motion estimation method using the cross pattern and the hexagonal pattern. For the block-matching motion estimation method, full search finds the best motion estimation, but it requires huge search time because it has to check every search point within the search window. The proposed method makes use of the fact that most of motion vectors lie near the center of block. The proposed method first uses the cross pattern to search near the center of block, and then uses the hexagonal pattern to search larger motion vectors. Experimental results show that our method is better than recently proposed search algorithms in terms of mean-square error performance and required search time.

A Fast Block-Matching Motion Estimation Algorithm with Motion Modeling and Motion Analysis (움직임 모델링과 해석을 통한 고속 블록정합 움직임 예측 방법)

  • 임동근;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.73-78
    • /
    • 2004
  • By modeling the block matching algorithm as a function of the correlation of image blocks, we derive search patterns for fast block matching motion estimation. The proposed approach provides an analytical support lot the diamond-shape search pattern, which is widely used in fast block matching algorithms. We also propose a new fast motion estimation algorithm using adaptive search patterns and statistical properties of the object displacement. In order to select an appropriate search pattern, we exploit the relationship between the motion vector and the block differences. By changing the search pattern adaptively, we improve motion prediction accuracy while reducing required computational complexity compared to other fast block matching algorithms.

Early Termination of Block Vector Search for Fast Encoding of HEVC Screen Content Coding

  • Ma, Jonghyun;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.388-392
    • /
    • 2014
  • This paper proposes an early termination method of a block vector search for fast encoding of high efficiency video coding (HEVC) screen content coding (SCC). In the proposed algorithm, two blocks indicated by two block vector predictors (BVPs) were first employed as an intra block copy (IBC) search. If the sum of absolute difference (SAD) value of the block is less than a threshold defined empirically, an IBC BV search is terminated early. The initial threshold for early termination is derived by statistical analysis and it can be modified adaptively based on a quantization parameter (QP). The proposed algorithm is evaluated on SCM-2.0 under all intra (AI) coding configurations. Experimental results show that the proposed algorithm reduces IBC BV search time by 29.23% on average while the average BD-rate loss is 0.41% under the HEVC SCC common test conditions (CTC).