International Journal of Fuzzy Logic and Intelligent Systems
/
제4권3호
/
pp.347-352
/
2004
We generated blocks from the direction-extracted fingerprint during the pre-process of the fingerprint recognition algorithm and performed training by using the direction minutiae of each block as the input pattern of the neural network, so that we extracted the core points to use in the matching. Based on this, we designed the fingerprint recognition embedded system and tested it by using the control board and the serial communication to utilize it for a variety of application systems. As a result, we can verify the reliance satisfactorily.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2000년도 추계학술발표논문집 (하)
/
pp.931-934
/
2000
움직임 추정 및 보상을 위한 방법 중 가장 많이 사용하는 블록 정합 방법은 어떤 평가 함수와 탐색방법(Search Procedure)을 사용했느냐에 따라 그 성능이 달라지게 된다. 본 논문에서는 평가 함수로써 평균 제곱 오차(Mean Squared Error; MSE), 평균 절대값 오차(Mean Absolute Error; MAE), 화소 차분류(Pel Difference Classification: PDC)을, 탐색 방법으로써 전체 탐색 방법(Full Search Method : FSM), 3단계 탐색 방법(Three Step Search : TSS), 대각 탐색 방법(Cross Search Algorithm ;CSA)을 사용하여 이들의 성능을 각각 비교 분석하여 봄으로써 블록 정합 방법을 이용한 움직임 추정에 대한 전반적인 이해를 도모하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (A)
/
pp.508-510
/
2001
동영상을 효율적으로 압축하기 위한 움직임백터 예측에 관한 많은 연구가 진행되어 왔다. 가장 일반적인 FBMA(Full search-based Block Matching Algorithm)는 화질은 좋지만 계량이 많기 때문에 실시간 인코딩을 요구하는 시스템에서 사용하는데 문제가 있다. 좋은 화질을 유지하면서 인코딩 속도를 해결하기 위한 많은 알고리즘들이 제안되어 왔지만 ASIC이나 소형 시스템에서 사용할 수 있는 방법이 계속 요구되고 있다. 본 논문에서는 계산량을 더욱 줄여 속도향상을 위한 방법인 TSWS(Two-Step search With Subsampling method) 제안하였다. TSWS는 블록정합알고리즘에 기반을 두고 있으며, 서브샘플링한 값으로 움직임 벡터를 찾는다. TSWS를 사용하였을 때 기존 방법들이 제공하는 주관적 화질이나 PSNR을 어느 정도 유지하면서도 속도를 20-30% 정도 개선시킬 수 있다.
Proceedings of the Korean Information Science Society Conference
/
한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
/
pp.712-714
/
2003
서로 다른 형태와 크기를 가지는 탐색패턴과 움직임 벡터의 분포는 블록 정합 기법에서 탐색 속도와 화질을 좌우하는 중요한 요소이다. 본 논문에서는 납작한 육각패턴을 이용한 새로운 고속 블록 정합 알고리즘을 제안한다. 이 방법은 작은 육각패턴을 이용하여 적은 탐색점으로 움직임이 적은 벡터를 우선 찾은 다음에 움직임이 큰 벡터에 대해서는 납작한 육각패턴을 이용하여 고속으로 움직임 벡터를 찾게 하였다. 실험결과, 제안된 알고리즘은 육각패턴 탐색기법에 비하여 움직임 벡터 예측의 속도에 있어서 약 11~51% 이상의 높은 성능 향상을 보였으며 화질 또한 PSNR 기준으로 약 0.05~0.74dB 의 향상을 보였다.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2001년도 추계학술발표논문집 (상)
/
pp.797-800
/
2001
영상 압축 분야에서 데이터의 압축이 필수적인데, 이때 가장 많은 중복성을 가지고 있는 시간적 중복성은 이전 프레임의 데이터를 이용하여 움직임 추정과 움직임 보상을 수행하고 추정된 움직임 벡터에 의해서 보상된 영상과 원 영상과의 차 신호를 부호화하여 데이터를 압축한다. 움직임 추정과 움직임 보상 기법은 비디오 영상압축에서 중요한 역할을 하지만 많은 계산량으로 인하여 실시간 응용 및 고해상도 응용에 많은 어려움을 가지고 있다. 만일 움직임 추정을 하기 전에 블록의 움직임을 예측할 수 있다면 이를 바탕으로 탐색 영역에서 초기 탐색점의 위치 및 탐색 패턴을 결정찬 수 있다. 본 논문에서는 움직임의 높은 시간적 상관성을 이용하여 초기 탐색점의 위치와 탐색 패턴을 결정함으로써 적응적으로 움직임 추정하는 새로운 기법을 제안하고 성능을 평가한다. 실험을 통하여 제안된 알고리즘은 계산량의 감소에 있어서 높은 성능 향상을 보였다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
한국신호처리시스템학회 2003년도 하계학술대회 논문집
/
pp.114-117
/
2003
본 논문에서는 video stream내의 움직이는 객체 정보를 추정하고 동적 GTM(genetic tree-map) 알고리즘을 사용하여 얼굴 영역 검출 기법을 제안한다. 기존의 일반적인 객체 추정 기법은 클러스터(cluster)과정을 통하여 영상 정보를 분할하고 그 중 움직이는 객체 부분을 복원함으로서 추정하였다. 제안하는 기법은 BMA(block matching algorithm)[1] 알고리즘을 사용하여 video stream 에서 움직이는 객체 정보를 얻고 클러스터 알고리즘으로 PCA(principal component analysis)를 사용한다. PCA 기법은 입력 데이터에 관해 통계적 특성을 이용하여 주성분을 찾는다. 주축과 영역분할 알고리즘을 사용하여 데이터를 분할하고, 분할된 객체 정보를 사용하여 특정 객체만을 추정하는 것이 가능하다. 이렇게 추정된 객체를 얼굴영역의 feature에 대하여 신경망 학습인 동적 GTM 알고리즘을 사용하여 생성된 동적 GTM 맵의 정보에 따라 객체의 얼굴영역만을 추출해 낼 수 있다[2-6].
International journal of advanced smart convergence
/
제10권3호
/
pp.163-171
/
2021
Recently, Machine Learning-based visualization approaches have been proposed to combat the problem of malware detection. Unfortunately, these techniques are exposed to Adversarial examples. Adversarial examples are noises which can deceive the deep learning based malware detection network such that the malware becomes unrecognizable. To address the shortcomings of these approaches, we present Block-matching and 3D filtering (BM3D) algorithm and deep image prior based denoising technique to defend against adversarial examples on visualization-based malware detection systems. The BM3D based denoising method eliminates most of the adversarial noise. After that the deep image prior based denoising removes the remaining subtle noise. Experimental results on the MS BIG malware dataset and benign samples show that the proposed denoising based defense recovers the performance of the adversarial attacked CNN model for malware detection to some extent.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2013년도 춘계학술발표대회
/
pp.317-318
/
2013
블록정합을 이용한 객체 추적 시 다른 물체에 의한 부분적인 가림이나 잡음 등이 발생할 경우, 추적 성능이 매우 저하될 수 있다. 이는 단순히 두 영상의 밝기를 블록 단위로 비교하여 이동 위치를 판단하기 때문이다. 본 논문에서는 상기 문제점을 해결하기 위해, 객체의 움직임을 예측할 수 있는 필터를 적용한다. 예측된 위치와 가까운 곳에서 계산된 유사도에는 보다 높은 가중치를 곱하여 블록정합을 수행한다. 필터를 통해 예측된 객체 이동은 과거의 움직임을 반영하고 있으므로 일시적인 외란에 대해 추적 능력을 강인하게 한다.
In this paper, we propose the receiver block error detection of the video codec and the image concealment algorithm using fuzzy inference. The proposed error detection and concealment algorithm gets SSD(Summation of Squared Difference) and BMC(Boundary Matching Coefficient) using the temporal and spatial similarity between corresponded blocks in the two successive frames. Proportional constant, ${\alpha}$, for threshold value, TH1 and TH2, is decided after fuzzy data is generated by each parameter. To examine the propriety of the proposed algorithm, random errors are inserted into the QCIF Susie standard image, then the error detection and concealment performance is simulated. To evaluate the efficiency of the algorithm, image quality is evaluated by PSNR for the error detection and concealed image by the existing VLC table and by the proposed method. In the experimental results, the error detection algorithm could detect all of the inserted error, the image quality is improved over 15dB after the error concealment compare to existing error detection algorithm.
We propose the fast full search algorithm that reduces the computational load of the block matching algorithm which is used for a motion estimation in the video coding. Since the conventional spiral search method starts searching at the center of the search window and then moves search point to estimate the motion vector pixel by pixel, it is good for the slow motion picture. However we proposed the efficient motion estimation method which is good for the fast and slow motion picture. Firstly, when finding the initial threshold value, we use the expanded predictor that can approximately calculate minimum threshold value. The proposed algorithm estimates the motion in the new search order after partitioning the search window and adapt the directional search order in the re-divided search window. At the result, we can check that the proposed algorithm reduces the computational load 94% in average compared to the conventional spiral full search algorithm without any loss of image quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.