• Title/Summary/Keyword: Block cipher algorithm

Search Result 196, Processing Time 0.025 seconds

An analysis on the S-boxes of block ciphers in 3GPP (3GPP 블록 암호의 S-box 안전성 분석)

  • 장구영;강주성;이옥연;정교일
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.4
    • /
    • pp.67-75
    • /
    • 2001
  • 3GPP proposed f8 and f9 algorithms based on the block cipher KASUMI to provide the data confidentiality and integrity over a radio access link for IMT-2000(W-CDMA). Also 3GPP proposed Milenage algorithm based on the block cipher Rijndael to provide an example set for 3GPP authentication and key generation functions. In order to analyze the security of 3GPP algorithms, we must go ahead an analysis of security of KASUMI and Rijndael. Since S-box is an important point of security of block cipher, in this paper we analyze the S-boxes of KASUMI and Rijndael and compare the S-boxes of KASUMI with the S-box of Rijndael. Although KASUMI S9-box is bad for AC and SAC, we find that AC of KASUMI FI function containing S7-box and S9-box is equal to AC of Rijndael S-box and SAC of KASUMI FI function is better than SAC of Rijndael S-box.

A Design and Analysis of the Block Cipher Circle-g Using the Modified Feistel Structure (변형된 Feistel 구조를 이용한 Circle-g의 설계와 분석)

  • 임웅택;전문석
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.3
    • /
    • pp.405-414
    • /
    • 2004
  • In this paper, we designed a 128-bits block cipher, Circle-g, which has 18-rounds modified Feistel structure and analyzed its secureness by the differential cryptanalysis and linear cryptanalysis. We could have full diffusion effect from the two rounds of the Circle-g. Because of the strong diffusion effect of the F-function of the algorithm, we could get a 9-rounds DC characteristic with probability 2^{-144} and a 12-rounds LC characteristic with probability 2^{-144}. For the Circle-g with 128-bit key, there is no shortcut attack, which is more efficient than the exhaustive key search, for more than 12 rounds of the algorithm.

  • PDF

A study on SEED block cipher algorithm for ICMP development (SEED 블록암호알고리즘을 적용한 통합 사례관리 시스템(ICMP) 개발에 관한 연구)

  • Oh, Dong-Sic;Kim, Young-Hyuk;Lim, Il-Kwon;Li, Qi Gui;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.244-247
    • /
    • 2010
  • In this paper, propose for the international standards of security and reliability SEED block cipher algorithm is applied to the ICMP. This paper is improve security, reliability and user comfort of weakness existing integrated case management system on spring based java framework technology. As a result, part of the user interface to improve performance and can be applied to real world applications.

  • PDF

Symmetry structured RC6 block cipher algorithm (대칭구조RC6블록 암호 알고리즘)

  • Kim, Gil-Ho;Park, Chang-Soo;Kim, Jong-Nam;Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.675-683
    • /
    • 2009
  • RC6 which has different algorithm of encryption and decryption has been proposed to have the same algorithm between encryption and decryption through inserting symmetry layer using simple rotate and logical operation. That means the half of whole RC6 round uses encryption algorithm and the rest of it uses decryption one and symmetry layer has been put into the middle of encryption and decryption. The proposed RC6 algorithm has no difference with the original one in the speed of process. However it is quite safe because by inserting symmetry layer the path of high probability which is needed for differential and linear analysis is cut off so that it is hard to be analyzed. The proposed symmetry layer algorithm can be easily applied to the algorithm which has different encryption and decryption and make it same, and it can be good idea to be used to design a new block cipher algorithm.

An Optimum Architecture for Implementing SEED Cipher Algorithm with Efficiency (효율적인 SEED 암호알고리즘 구현을 위한 최적화 회로구조)

  • Shin Kwang-Cheul;Lee Haeng-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.49-57
    • /
    • 2006
  • This paper describes the architecture for reducing its size and increasing the computation rate in implementing the SEED algorithm of a 12B-bit block cipher, and the result of the circuit design. In order to increase the computation rate, it is used the architecture of the pipelined systolic array, This architecture is a simple thing without involving any buffer at the input and output part. By this circuit, it can be recorded 320 Mbps encryption rate at 10 MHz clock. We have designed the circuit with the VHDL coding, implemented with a FPGA of 50,000 gates.

  • PDF

Improved Differential Attack of Seven-Round SEED (7-라운드 SEED에 대한 향상된 차분 공격)

  • Sung, Jae-Chul
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.25-30
    • /
    • 2010
  • Block Cipher SEED which was developed by KISA are not only Korea national standard algorithm of TTA but also one of standard 128-bit block ciphers of ISO/IEC. Since SEED had been developed, many analyses were tried but there was no distinguishing cryptanalysis except the 7-round differential attack in 2002. The attack used the 6-round differential characteristic with probability $2^{-124}$ and analyzed the 7-round SEED with $2^{127}$ chosen plaintexts. In this paper, we propose a new 6-round differential characteristic with probability $2^{-110}$ and analyze the 7-round SEED with $2^{113}$ chosen plaintexts.

Power Analysis Attack of Block Cipher AES Based on Convolutional Neural Network (블록 암호 AES에 대한 CNN 기반의 전력 분석 공격)

  • Kwon, Hong-Pil;Ha, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.14-21
    • /
    • 2020
  • In order to provide confidential services between two communicating parties, block data encryption using a symmetric secret key is applied. A power analysis attack on a cryptosystem is a side channel-analysis method that can extract a secret key by measuring the power consumption traces of the crypto device. In this paper, we propose an attack model that can recover the secret key using a power analysis attack based on a deep learning convolutional neural network (CNN) algorithm. Considering that the CNN algorithm is suitable for image analysis, we particularly adopt the recurrence plot (RP) signal processing method, which transforms the one-dimensional power trace into two-dimensional data. As a result of executing the proposed CNN attack model on an XMEGA128 experimental board that implemented the AES-128 encryption algorithm, we recovered the secret key with 22.23% accuracy using raw power consumption traces, and obtained 97.93% accuracy using power traces on which we applied the RP processing method.

A Cryptoprocessor for AES-128/192/256 Rijndael Block Cipher Algorithm (AES-128/192/256 Rijndael 블록암호 알고리듬용 암호 프로세서)

  • 안하기;박광호;신경욱
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.257-260
    • /
    • 2002
  • This paper describes a design of cryptographic processor that implements the AES (Advanced Encryption Standard) block cipher algorithm“Rijndael”. To achieve high throughput rate, a sub-pipeline stage is inserted into the round transformation block, resulting that the second half of current round function and the first half of next round function are being simultaneously operated. For area-efficient and low-power implementation the round transformation block is designed to share the hardware resources in encryption and decryption. An efficient scheme for on-the-fly key scheduling, which supports the three master-key lengths of 128-b/192-b/256-b, is devised to generate round keys in the first sub-pipeline stage of each round processing. The cryptoprocessor designed in Verilog-HDL was verified using Xilinx FPGA board and test system. The core synthesized using 0.35-${\mu}{\textrm}{m}$ CMOS cell library consists of about 25,000 gates. Simulation results show that it has a throughput of about 520-Mbits/sec with 220-MHz clock frequency at 2.5-V supply.

  • PDF

White-Box AES Implementation Revisited

  • Baek, Chung Hun;Cheon, Jung Hee;Hong, Hyunsook
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.273-287
    • /
    • 2016
  • White-box cryptography presented by Chow et al. is an obfuscation technique for protecting secret keys in software implementations even if an adversary has full access to the implementation of the encryption algorithm and full control over its execution platforms. Despite its practical importance, progress has not been substantial. In fact, it is repeated that as a proposal for a white-box implementation is reported, an attack of lower complexity is soon announced. This is mainly because most cryptanalytic methods target specific implementations, and there is no general attack tool for white-box cryptography. In this paper, we present an analytic toolbox on white-box implementations of the Chow et al.'s style using lookup tables. According to our toolbox, for a substitution-linear transformation cipher on n bits with S-boxes on m bits, the complexity for recovering the $$O\((3n/max(m_Q,m))2^{3max(m_Q,m)}+2min\{(n/m)L^{m+3}2^{2m},\;(n/m)L^32^{3m}+n{\log}L{\cdot}2^{L/2}\}\)$$, where $m_Q$ is the input size of nonlinear encodings,$m_A$ is the minimized block size of linear encodings, and $L=lcm(m_A,m_Q)$. As a result, a white-box implementation in the Chow et al.'s framework has complexity at most $O\(min\{(2^{2m}/m)n^{m+4},\;n{\log}n{\cdot}2^{n/2}\}\)$ which is much less than $2^n$. To overcome this, we introduce an idea that obfuscates two advanced encryption standard (AES)-128 ciphers at once with input/output encoding on 256 bits. To reduce storage, we use a sparse unsplit input encoding. As a result, our white-box AES implementation has up to 110-bit security against our toolbox, close to that of the original cipher. More generally, we may consider a white-box implementation of the t parallel encryption of AES to increase security.

Design of Block Cipher Algorithm for Medical Information Security (의료정보 보안을 위한 블록 암호 알고리즘의 설계)

  • Jeong, Hye-Myeong;Jeon, Mun-Seok
    • The KIPS Transactions:PartC
    • /
    • v.8C no.3
    • /
    • pp.253-262
    • /
    • 2001
  • 이 논문에서 제안한 MIT(Medical Information Transmission) 암호 알고리즘은 의료정보 전송을 위한 PACS의 표준 프로토콜인 DICOM표준을 위하여 설계되었다. 또한, 암호화에 민감한 영항을 미치는 요소 중에 사나인 서브키를 생성하기 위해 키 생성 일고리즘을 보다 복잡하게 설계함으로써 계산 복잡도의 증가와 확률 계산의 증가를 도모하였다.

  • PDF