Blowfish is a symmetric block cipher that can be used as a drop-in replacement fur DES or IDEA. It takes a variable-length key, from 32bit to 448bit, making it ideal for both domestic and exportable use. This paper is somewhere middle-of-the-line, where this paper made significant tradeoffs between speed, size and ease of implementation. The main focus was to make an implementation that was usable, moderately compact, and would still run at an acceptable clock speed. For the real time process of blowfish, it is required that high-speed operation and small size hardware. So, A structure of new adders constructed in this study has all advantages abstracted from other adders. As for this new adder, area cost increases by 1.06 times and operation speed increases by 1.42 times.
This paper presents the design of Rijndael crypto-processor with 128 bits, 192 bits and 256 bits key size. In October 2000 Rijndael cryptographic algorithm is selected as AES(Advanced Encryption Standard) by NIST(National Institute of Standards and Technology). Rijndael algorithm is strong in any known attacks. And it can be efficiently implemented in both hardware and software. We implement Rijndael algorithm in hardware, because hardware implementation gives more fast encryptioN/decryption speed and more physically secure. We implemented Rijndael algorithm for 128 bits, 192 bits and 256 bits key size with VHDL, synthesized with Synopsys, and simulated with ModelSim. This crypto-processor is implemented using on-the-fly key generation method and using lookup table for S-box/SI-box. And the order of Inverse Shift Row operation and Inverse Substitution operation is exchanged in decryption round operation of Rijndael algorithm. It brings about decrease of the total gate count. Crypto-processor implemented in these methods is applied to mobile systems and smart cards, because it has moderate gate count and high speed.
Kim, Ho-Won;Park, Yong-Je;Kim, Moo-Seop;Ryu, Hui-Su
대한전자공학회:학술대회논문집
/
대한전자공학회 2002년도 ITC-CSCC -1
/
pp.317-320
/
2002
In this paper, we will present the design and implementation of the KASUMI crypto algorithm and confidentiality algorithm (f8) to an hardware chip for 3GPP system. The f8 algorithm is based on the KASUMI which is a block cipher that produces a 64-bit output from a 64-bit input under the control of a 128-bit key. Various architectures (low hardware complexity version and high performance version) of the KASUMI are made with a Xilinx FPGA and the characteristics such as hardware complexity and thor performance are analyzed.
In this paper, we first investigate the side channel analysis attack resistance of various FPGA hardware implementations of the ARIA block cipher. The analysis is performed on an FPGA test board dedicated to side channel attacks. Our results show that an unprotected implementation of ARIA allows one to recover the secret key with a low number of power or electromagnetic measurements. We also present a masking countermeasure and analyze its second-order side channel resistance by using various suitable preprocessing functions. Our experimental results clearly confirm that second-order differential side channel analysis attacks also remain a practical threat for masked hardware implementations of ARIA.
정보통신의 발달과 인터넷의 확산으로 인해 정보보안의 필요성이 중요한 문제로 대두되면서 여러 종류의 암호 알고리즘이 개발되어 활용되고 있다. Substitution Permutation Networks(SPN)등의 블록 암호 알고리즘에서는 확산선형변환 행렬을 사용하여 안전성을 높이고 있다. 확산선형변환 행렬이 Maximum Distance Separable(MDS) 코드를 생성하면 선형 공격과 차분 공격에 강한 특성을 보인다. 본 논문에서는 선형변환 행렬이 MDS 코드를 생성하는 가를 판단하는 새로운 알고리즘을 제안한다. 입력 코드는 GF(2/sub□/)상의 원소들로 구성되며, 원소를 변수로 해석하여, 변수를 소거시키면서 선형변환행렬이 MDS 코드를 생성하는 가를 판단한다. 본 논문에서 제안한 알고리즘은 종래의 모든 정방 부분행렬이 정칙인가를 판단하는 알고리즘과 비교하여 연산 수행 시간을 크게 줄였다.
암호화 기술을 이용하여 고비도의 정보보호를 달성하고자 하는 VPN 시스템에서는 암호 가속 성능이 관건이다. 그러나 암호 연산은 많은 계산량을 필요로 하고 소프트웨어로 구현되었을 경우에는 그 성능에 한계가 있기 때문에, 전용의 암호 가속 하드웨어를 이용하여 구현하는 것이 필수적으로 요구된다. 본 논문에서는 많이 사용되어지는 블록 암호 알고리즘인 DES, 3DES, AES, SEED가 실장된 암호 가속 칩을 이용하여 PCI 카드를 설계 제작한 사례를 소개하고 있다. 제작한 암호가속카드는 상용 VPN 시스템에 실장된 후 그 성능이 평가되었다.
Rijndael algorithm is known to a new private key block cipher which is substitute for DES. Rijndael algorithm is adequate to both hardware and software implementation, so hardware implementation of Rijndael algorithm is applied to high speed data encryption and decryption. This paper describes three implementation methods of Rijndael S-box, which is important factor in performance of Rijndael coprocessor. It shows synthesis results of each S-box implementation in Xilinx FPGA. Tllc lilree S-box implementation methods are implementation using lookup table only, implementation using both lookup table and combinational logic, and implementation using combinational logic only.
Kumar 등은 interlacing과 decomposition을 적용한 112-비트 블록 암호를 제안하였다. 본 논문에서는 이 블록 암호에 대한 첫 번째 분석 결과를 소개한다. 이 블록 암호를 구성하는 연산들은 모두 선형성만을 가지고 있다. 따라서 112개의 독립인 평문/암호문 쌍이 주어졌을 경우, 비밀키를 복구하지 않더라도 임의의 암호문을 복호화할 수 있다. 본 논문의 분석 결과를 통하여 이 블록 암호는 매우 취약함을 알 수 있다.
본 논문에서는 IETF 표준 MAC 알고리즘 AES-CMAC에 대한 오류 주입 공격을 제안한다. 본 공격에서 사용된 오류 주입 가정은 FDTC'05에서 제안된 공격 모델에 기반을 둔다. 본 논문에서 제안하는 공격은 매우 적은수의 오류 주입만을 이용하여 AES-CMAC의 128-비트 비밀키를 복구할 수 있다. 본 공격 결과는 AES-CMAC에 대한 첫 번째 키 복구 공격 결과이다.
Park, Taehwan;Seo, Hwajeong;Bae, Bongjin;Kim, Howon
Journal of information and communication convergence engineering
/
제14권4호
/
pp.233-239
/
2016
A remote control system (RCS) can monitor a user's confidential information by using the broadcast receivers in Android OS. However, the current RCS detection methods are based only on a virus vaccine. Therefore, if the user's smartphone is infected by a brand new RCS, these methods cannot detect this new RCS immediately. In this paper, we present a secure message transmission medium. This medium is completely isolated from networks and can communicate securely through a QR code channel by using symmetric key cryptography such as the AES block cipher and public key cryptography such as elliptic curve cryptography for providing security. Therefore, the RCS cannot detect any confidential information. This approach is completely immune to any RCS attacks. Furthermore, we present a secure QR code-based key exchange protocol by using the elliptic curve Diffie-Hellman method and message transmission protocols; the proposed protocol has high usability and is very secure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.