• Title/Summary/Keyword: Block adjustment

Search Result 110, Processing Time 0.026 seconds

Complexity Reduction of HEVC SAO Intra Modes By Adjustment of Offset Values (HEVC SAO 인트라 모드 오프셋 값 조정을 통한 복잡도 감소)

  • Mun, Ji-Hun;Choi, Jung-Ah;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.355-361
    • /
    • 2014
  • In this paper, we propose a complexity reduction method of sample adaptive offset (SAO), which is an in-loop filter in high-efficiency video coding (HEVC). In the conventional SAO, an offset value is calculated for each coding tree block (CTB) to minimize the error between the original and reconstructed images. In order to determine the optimal offset value, all offset candidates are examined and the offset value that leads to the smallest rate-distortion cost is chosen. Thus, SAO occupies a significant amount of the computational complexity in the HEVC encoder. In the proposed method, we determine the least-used band (LUB) by considering the statistical characteristics of offset values and without processing the offset value included in the LUB. Also, in the offset value decision stage, we check only a certain number of candidates rather than all of them. Experimental results show that the proposed method reduces the encoding time by approximately 8.15% without yielding a significant loss in terms of coding efficiency.

Determination of the Required Minimum Spacing between Signalized Intersections and Bus-Bays (신호교차로와 버스정류장간 이격거리 산정에 관한 연구)

  • 하태준;박제진;임혜영
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2002
  • The influence of bus stops near signalized intersections is one of the important factors which cannot be negligible in the analysis of the capacity of signalized intersections. Absence of consideration of bus bay can reduce capacity and increase the time that the stop of buses block other traveling vehicles. This influence is reflected by the bus blockage adjustment factor in KHCM, but the factor does not consider the course of each bus passing the intersection. Particularly, left turn buses have more influence on the capacity than the other buses and require the minimum length of the road for lane changes. All the existing criteria can apply only to arterial roads on which mostly traffic flows are continuous. And the criteria. which can determine the optimum location and the minimum distance between a signalized intersection and a bus bay, is not prepared and the related study is insufficient. Therefore, a theoretical formula is derived in this study being based on the theories which are avaliable to apply to the situation of signalized intersections.

Design and Implementation of A Section-Specific QoE Frame for Efficient QoE Measurement (구간별 QoE 프레임을 이용한 QoE 네트워크 설계 및 구현)

  • Cho, Sungchol;Han, Li;Sun, Shimin;Jin, Xianshu;Liu, Jing;Han, Sunyoung
    • Journal of KIISE:Information Networking
    • /
    • v.41 no.4
    • /
    • pp.151-166
    • /
    • 2014
  • The present method of measuring QoE (Quality of Experience) was to measure the whole block from the server that provides service to the terminal that the client gets the service. In this way, it was possible to simply determine whether the quality of QoE was good or not, and when the quality of QoE became bad, there was no way of presenting solutions. Also, as QoE metrics are numerous, there has been no strict regulation on how to use. This study analyzed QoE metrics in the viewpoints of network and clients, subdivided the whole service into three phases including one from the server providing the service to the router, another from the router to the terminal getting the service, and the third from the service router to the client router, and presented QoE metric frames appropriate for each phase. Through this, in the KOREN-CERNET environment, this study designed and embodied QoE network and demonstrated stability of QoE network, reduction in client complaint settlement time, and content adjustment effect according to the network change.

Semi-automatic Camera Calibration Using Quaternions (쿼터니언을 이용한 반자동 카메라 캘리브레이션)

  • Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The camera is a key element in image-based three-dimensional positioning, and camera calibration, which properly determines the internal characteristics of such a camera, is a necessary process that must be preceded in order to determine the three-dimensional coordinates of the object. In this study, a new methodology was proposed to determine interior orientation parameters of a camera semi-automatically without being influenced by size and shape of checkerboard for camera calibration. The proposed method consists of exterior orientation parameters estimation using quaternion, recognition of calibration target, and interior orientation parameter determination through bundle block adjustment. After determining the interior orientation parameters using the chessboard calibration target, the three-dimensional position of the small 3D model was determined. In addition, the horizontal and vertical position errors were about ${\pm}0.006m$ and ${\pm}0.007m$, respectively, through the accuracy evaluation using the checkpoints.

Block Adjustment with GPS/INS in Aerial Photogrammetry (GPS/INS에 의한 항공사진측량의 블럭조정)

  • Park Woon Yong;Lee Kang Won;Lee Jae One;Jeong Gong Uhn
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.285-291
    • /
    • 2004
  • GPS photogrammetry or the GPS/INS photogrammetry, which are based on the direct measurement of the projection centers and attitude at the moment of camera exposure time through loading the GPS receiver or INS in aircraft. Both photogrammetric methods can offer us to acquire the exterior orientation parameters with only minimum ground control points, even the ground control process could be completely skipped. Consequently, we can drastically reduce the time and cost for the mapping process. In this thesis, test flight was conducted in Suwon area to evaluate the performance of accuracy and efficiency through the analysis of results among the three photogrammetric methods, that is, traditional photogrammetry, GPS photogrammetry and GPS/INS photogrammetry. Test results shows that a large variety of advantages of GPS photogrammetry and GPS/INS photogrammetry against traditional photogrammetry is to be verified. Especially, the number of ground control points for the exterior orientation could be saved more than 70~80%, respectively.

Computation of 3D Coordinates from Stereo Images with RPCs (RPC를 이용한 Stereo 영상으로부터의 3차원 좌표 추출)

  • Kim Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • RPC(Rational Polynomial Camera) models have become the replacement model of choice for a number of high resolution satellite imagery providers. RPCs(Rational Polynomial Coefficients) provide a compact accurate representation of the ground to image geometry, allowing users to perform full photogrammetric processing of satellite imagery including block adjustment, 3D feature extraction and orthorectification. This paper presents an algorithm for 3D feature extraction using downhill simpler method which requires only function evaluations, not derivatives. The algorithm was implemented as an executable software program and tested using stereo IKONOS images of Seoul city. The results showed that the proposed algorithm was fast and accurate enough to be used as a practical method for the 3D feature extraction from stereo images with RPCs.

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Productive performance of Mexican Creole chickens from hatching to 12 weeks of age fed diets with different concentrations of metabolizable energy and crude protein

  • Matus-Aragon, Miguel Angel;Gonzalez-Ceron, Fernando;Salinas-Ruiz, Josafhat;Sosa-Montes, Eliseo;Pro-Martinez, Arturo;Hernandez-Mendo, Omar;Cuca-Garcia, Juan Manuel;Chan-Diaz, David Jesus
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1794-1801
    • /
    • 2021
  • Objective: The study aimed to evaluate the productive performance, carcass yield, size of digestive organs and nutrient utilization in Mexican Creole chickens, using four diets with different concentrations of metabolizable energy (ME, kcal/kg) and crude protein (CP, %). Methods: Two hundred thirty-six chickens, coming from eight incubation batches, were randomly distributed to four experimental diets with the following ME/CP ratios: 3,000/20, 2,850/19, 2,700/18 and 2,550/17. Each diet was evaluated with 59 birds from hatching to 12 weeks of age. The variables feed intake (FI), body weight gain (BWG), feed conversion (FC), mortality, carcass yield, size of digestive organs, retention of nutrients, retention efficiency of gross energy (GE) and CP, and excretion of N were recorded. Data were analyzed as a randomized block design with repeated measures using the GLIMMIX procedure of SAS, with covariance AR (1) and adjustment of degrees of freedom (Kendward-Roger), the adjusted means were compared with the least significant difference method at a significance level of 5%. Results: The productive performance variables BWG, mortality, carcass yield, fat and GE retention and excretion of N were not different (p>0.05) due to the diet effect. In the 3,000/20 diet, the chickens had lower values of FI, FC, crop weight, gizzard weight, retention, and retention efficiency of CP (p<0.05) than the chickens of the 2,550/17 diet. Conclusion: The Mexican Creole chickens from hatching to 12 weeks of age can be feed with a diet with 2,550 kcal ME and 17% CP, without compromising productive parameters (BWG, mortality, carcass yield) but improving retention and retention efficiency of CP.

3D Reconstruction of Structure Fusion-Based on UAS and Terrestrial LiDAR (UAS 및 지상 LiDAR 융합기반 건축물의 3D 재현)

  • Han, Seung-Hee;Kang, Joon-Oh;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.

A CAD/CAM-based strategy for concurrent endodontic and restorative treatment

  • Escobar, Patricia Maria;Kishen, Anil;Lopes, Fabiane Carneiro;Borges, Caroline Cristina;Kegler, Eugenio Gabriel;Sousa-Neto, Manoel Damiao
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.27.1-27.12
    • /
    • 2019
  • This case report describes a technique in which endodontic treatment and permanent indirect restoration were completed in the same clinical appointment with the aid of a computer-aided design/computer-aided manufacturing (CAD/CAM) system. Two patients were diagnosed with irreversible pulpitis of the mandibular first molar. After access preparation, root canals were located, irrigation was performed until bleeding ceased, and the coronal tooth structure was prepared for indirect restoration. Then, utilizing an interim 3-mm build-up of the endodontic access cavity, a hemi-arch digital scan was performed with an intraoral scanner. Subsequent to digital scanning, restoration design was performed simultaneously with the endodontic procedure. The root canals were shaped using the Race system under irrigation with 2.5% sodium hypochlorite followed by root canal filling. The pulp chamber was subsequently filled with a 3-mm-thick composite resin restoration mimicking the interim build-up previously utilized to facilitate block milling in the CAD/CAM system. Clinical try-in of the permanent onlay restoration was followed by acid etching, application of a 5th generation adhesive, and cementation of the indirect restoration. Once the restoration was cemented, rubber dam isolation was removed, followed by occlusal adjustment and polishing. After 2 years of follow-up, the restorations were esthetically and functionally satisfactory, without complications.