• Title/Summary/Keyword: Block Generation Time

Search Result 137, Processing Time 0.023 seconds

Blockchain for Securing Smart Grids

  • Aldabbagh, Ghadah;Bamasag, Omaimah;Almasari, Lola;Alsaidalani, Rabab;Redwan, Afnan;Alsaggaf, Amaal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.255-263
    • /
    • 2021
  • Smart grid is a fully-automated, bi-directional, power transmission network based on the physical grid system, which combines sensor measurement, computer, information communication, and automatic control technology. Blockchain technology, with its security features, can be integrated with Smart Grids to provide secure and efficient power management and transmission. This paper dicusses the deployment of Blockchain technology in Smart Grid. It presents application areas and protocols in which blockchain can be applied to in securing smart grid. One application of each area is explored in detail, such as efficient peer-to-peer transaction, lower platform costs, faster processes, greater flexibility in power generation to transmission, distribution and power consumption in different energy storage systems, current barriers obstructing the implementation of blockchain applications with some level of maturity in financial services but concepts only in energy and other sectors. Wide range of energy applications suggesting a suitable blockchain architecture in smart grid operations, a sample block structure and the potential blockchain technicalities employed in it. Also, added with efficient data aggregation schemes based on the blockchain technology to overcome the challenges related to privacy and security in the smart grid. Later on, consensus algorithms and protocols are discussed. Monitoring of the usage and statistics of energy distribution systems that can also be used to remotely control energy flow to a particular area. Further, the discussion on the blockchain-based frameworks that helps in the diagnosis and maintenance of smart grid equipment. We have also discussed several commercial implementations of blockchain in the smart grid. Finally, various challenges have been discussed for integrating these technologies. Overall, it can be said at the present point in time that blockchain technology certainly shows a lot of potentials from a customer perspective too and should be further developed by market participants. The approaches seen thus far may have a disruptive effect in the future and might require additional regulatory intervention in an already tightly regulated energy market. If blockchains are to deliver benefits for consumers (whether as consumers or prosumers of energy), a strong focus on consumer issues will be needed.

Effect of droplet protection screen height on the prevention ability of infectious droplet airborne transmission in closed space (밀폐공간에서 비말 가림막 높이에 따른 감염성 비말 공기전파 차단능력 평가)

  • Heo, Jieun;Cho, Hee-joo;Park, Hyun-Seol;Shin, Dongho;Shim, Joonmok;Joe, Yun-Haeng
    • Particle and aerosol research
    • /
    • v.17 no.2
    • /
    • pp.37-42
    • /
    • 2021
  • Although the installation of droplet protection screen (DPS) is known to prevent droplet transmission, there is still a lack of knowledge in effectiveness of DPS installation to block the airborne transmission. In this study, the prevention ability of DPS against airborne transmission was evaluated according to the DPS height. When the DPS was not installed, the maximum concentration of PM1.0 at the location opposite to infected person was 35% of that at the infected person location. When the DPS was installed, the DPS effectively prevented the airborne transmission, consequently approximately 7% of generated particles were measured at the opposite location from particle generation position (infected person location). The prevention ability of DPS increased with DPS height, the maximum prevention efficiency of 95.1% was obtained when the DPS height was 900mm. Moreover, the speed of airborne transmission was delayed by installation of DPS, and the delay time increased with DPS height.

Development of an Optimization Model and Algorithm Based on Transportation Problem with Additional Constraints (추가 제약을 갖는 수송문제를 활용한 공화차 배분 최적화 모형 및 해법 개발)

  • Park, Bum Hwan;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.833-843
    • /
    • 2016
  • Recently, in the field of rail freight transportation, the number of trains dedicated for shippers has been increasing. These dedicated trains, which run on the basis of a contract with shippers, had been restricted to the transportation of containers, or so called block trains. Nowadays, such commodities have extended to cement, hard coal, etc. Most full freight cars are transported by dedicated trains. But, for empty car distribution, the efficiency still remains questionable because the distribution plan is manually developed by dispatchers. In this study, we investigated distribution models delineated in the KTOCS system which was developed by KORAIL as well as mathematical models considered in the state-of-the-art. The models are based on optimization models, especially the network flow model. Here we suggest a new optimization model with a framework of the column generation approach. The master problem can be formulated into a transportation problem with additional constraints. The master problem is improved by adding a new edge between the supply node and the demand node; this edge can be found using a simple shorted path in the time-space network. Finally, we applied our algorithm to the Korean freight train network and were able to find the total number of empty car kilometers decreased.

A Wideband ${\Delta}{\Sigma}$ Frequency Synthesizer for T-DMB/DAB/FM Applications in $0.13{\mu}m$ CMOS (T-DMB/DAB/FM 수신기를 위한 광대역 델타시그마 분수분주형 주파수합성기)

  • Shin, Jae-Wook;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.75-82
    • /
    • 2010
  • This paper presents a wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer for a multi-band single chip CMOS RFIC transceivers. A wideband VCO utilizes a 6-bit switched capacitor array bank for 2340~3940 MHz frequency range. VCO frequency calibration circuit is designed for optimal capacitor bank code selection before phase locking process. It finishes the calibration process in $2{\mu}s$ over the whole frequency band. The LO generation block has selectable multiple division ratios of ${\div}2$, ${\div}16$, and ${\div}32$ to generate LO I/Q signals for T-DMB/DAB/FM Radio systems in L-Band (1173~1973 MHz), VHF-III (147~246 MHz), VFH-II (74~123 MHz), respectively. The measured integrated phase noise is quite low as it is lower than 0.8 degree RMS over the whole frequency band. Total locking time of the ${\Delta}{\Sigma}$ frequency synthesizer including VCO frequency calibration time is less than $50{\mu}s$. The wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer is fabricated in $0.13{\mu}m$ CMOS technology, and it consumes 15.8 mA from 1.2 V DC supply.

Building Matching Analysis and New Building Update for the Integrated Use of the Digital Map and the Road Name Address Map (수치지도와 도로명주소지도의 통합 활용을 위한 건물 매칭 분석과 신규 건물 갱신)

  • Yeom, Jun Ho;Huh, Yong;Lee, Jeabin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.459-467
    • /
    • 2014
  • The importance of fusion and association using established spatial information has increased gradually with the production and supply of various spatial data by public institutions. The generation of necessary spatial information without field investigation and additional surveying can reduce time, labor, and financial costs. However, the study of the integration of the newly introduced road name address map with the digital map is very insufficient. Even though the use of the road name address map is encouraged for public works related to spatial information, the digital map is still widely used because it is the national basic map. Therefore, in this study, building matching and update were performed to associate the digital map with the road name address map. After geometric calibration using the block-based ICP (Iterative Closest Point) method, multi-scale corresponding pair searching with hierarchical clustering was applied to detect the multi-type match. The accuracy assessment showed that the proposed method is more than 95% accurate and the matched building layer of the two maps is useful for the integrated application and fusion. In addition, the use of the road name address map, which carries the latest and most frequently renewed data, enables cost-effective updating of new buildings.

A Small-area Hardware Implementation of EGML-based Moving Object Detection Processor (EGML 기반 이동객체 검출 프로세서의 저면적 하드웨어 구현)

  • Sung, Mi-ji;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2213-2220
    • /
    • 2017
  • This paper proposes an efficient approach for hardware implementation of moving object detection (MOD) processor using effective Gaussian mixture learning (EGML)-based background subtraction method. Arithmetic units used in background generation were implemented using LUT-based approximation to reduce hardware complexity. Hardware resources used for both background subtraction and Gaussian probability density calculation were shared. The MOD processor was verified by FPGA-in-the-loop simulation using MATLAB/Simulink. The MOD performance was evaluated by using six types of video defined in IEEE CDW-2014 dataset, which resulted the average of recall value of 0.7700, the average of precision value of 0.7170, and the average of F-measure value of 0.7293. The MOD processor was implemented with 882 slices and block RAM of $146{\times}36kbits$ on Virtex5 FPGA, resulting in 60% hardware reduction compared to conventional design based on EGML. It was estimated that the MOD processor could operate with 75 MHz clock, resulting in real-time processing of $800{\times}600$ video with a frame rate of 39 fps.

User Integrated Authentication System using EID in Blockchain Environment (블록체인 환경에서 EID를 이용한 사용자 통합 인증 시스템)

  • Kim, Jai-Yong;Jung, Yong-Hoon;Jun, Moon-Seog;Lee, Sang-Beon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.24-31
    • /
    • 2020
  • Centralized systems in computing environments have various problems, such as privacy infringement due to hacking, and the possibility of privacy violations in case of system failure. Blockchain, one of the core technologies for the next generation of converged information, is expected to be an alternative to the existing centralized system, which has had various problems. This paper proposes a blockchain-based user authentication system that can identify users using EID in an online environment. Existing identification (ID)/password (PW) authentication methods require users to store personal information in multiple sites, and receive and use their respective IDs. However, the proposed system can be used without users signing up at various sites after the issuing of an EID. The proposed system issues an EID with a minimum of information, such as an e-mail address and a telephone number. By comparing the stability and efficiency of a centralized system, the proposed integrated authentication system proved to be excellent. In order to compare stability against existing systems, we chose attack methods and encroachments on the computing environment. To verify efficiency, the total throughput between the user's app, the issuance and certification-authority's servers, and the service provider's servers was compared and analyzed based on processing time per transaction.