• Title/Summary/Keyword: Block DCT(Discrete Cosine Transform)

Search Result 89, Processing Time 0.027 seconds

A blocking artifacts reduction algorithm using block boundary pixel difference characteristics (블록 경계 화소차값의 특성을 이용한 블록화 현상 제거 알고리즘)

  • 채병조;손채봉;오승준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1299-1309
    • /
    • 1998
  • In this paper, we propose a new approach for reducing the blocking artifact that is one of drawbacks of the block-based Discrete Cosine Transform (DCT) without introducing additional information or significant blurring. We modify the inter-block discontinuity minimization technique to preserve edges within a block as well as to reduce visible block boundaries. The homogeneity of each block is decided by the threshold value reated to Q-factor, which is included in a JPEG as well as MPEG streams. The quantization error is estimated by minimizing the discontinuity, which is weighted in proportion to block discontinuity and added to each pixel in the block to compensate block artifacts. The proposed algorithm reconstructs images which have less noticeable block boundaries from a subjective viewpoit without anyconstraints.

  • PDF

Boundary Strength based Adaptive Interpolation Filter (경계 강도 기반의 적응적 보간 필터)

  • Song, Yunseok;Choi, Jung-Ah;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.26-27
    • /
    • 2014
  • This paper presents an adaptive interpolation filtering scheme for the High Efficiency Video Coding (HEVC) standard. In regards to interpolation for motion estimation and compensation, the conventional HEVC employs 8-tap and 4-tap filters for luma and chroma samples, respectively. Coefficients in such filters are determined by discrete cosine transform (DCT). In the proposed scheme, boundary strength values are stored after the execution of the deblocking filter. For each block, the sum of boundary strength values is calculated to indicate whether its region is complex or simple. Consequently, based on the region classification, 12-tap and 8-tap interpolation filters are used for complex and simple regions, respectively. This process is applied to luma sample interpolation only. Simulation results show 1.8% average BD-rate reduction compared to the conventional method.

  • PDF

A Blind Video Watermarking Technique Using Luminance Masking and DC Modulus Algorithm (휘도 마스킹과 DC Modulus 알고리즘을 이용한 비디오 워터마킹)

  • Jang Yong-Won;Kim, In-Taek;Han, Seung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.7
    • /
    • pp.302-307
    • /
    • 2002
  • Digital watermarking is the technique, which embeds an invisible signal including signal including owner identification and copy control information into multimedia data such as audio, video, and images for copyright protection. A new MPEG watermark embedding algorithm using complex block effect based on the Human Visual System(HVS) is introduced in this paper. In this algorithm, $8{\times}8$ dark blocks are selected, and the watermark is embedded in the DC component of the discrete cosine transform(DCT) by using quantization and modulus calculation. This algorithm uses a blind watermark retrieval technique, which detects the embedded watermark without using the original image. The experimental results show that the proposed watermark technique is robust against MPEG coding, bitrate changes, and various GOP(Group of Picture) changes.

Digital Watermarking by Rearranging and Modifying DCT Coefficients

  • Lee, Hee sup;Oh, Sang-Heun;Lee, Keun-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.902-905
    • /
    • 2000
  • Because of the rapid growth of Internet and multimedia applications, how to protect IPR (intellectual property rights) has become a critical issue. Is one of the ways to overcome the problem of the protection of IPR. Digital watermarking call be applied to multimedia data, such as digital images, digital video, and digital audio. In this paper, we propose a digital watermarking technique for digital images to authenticate an owner or an image by embedding visually recognizable patterns, such as logos, signatures, or stamps into images In BDCT (block discrete cosine transform) frequency domain. The proposed method sorts the components of an original image twice. At the same time, the method, also, rearranges the components of a watermark twice in order to be more robust, and finally embeds the watermark into the image. From the experimental results, the conjunction of three similarity measurements shows that our proposed method is robust to image cropping, image filtering, and JPEG (the Joint Photographic Experts Group) both subjectively and objectively.

  • PDF

A Postfiltering Algorithm for Enhancement in Block-based DCT Compressed Images (블록 기반 DCT 압축 영상의 화질 개선을 위한 후처리 필터링 알고리듬)

  • Kim, Yong-Hun;Jeong, Jong-Hyeog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • Blocking and ringing artifacts continue to be the most serious defects that occur in images and video streams compressed to low bit rates using block-based discrete cosine transform(DCT) compression standards. These artifacts contain the high frequency components near the block and the edge boundaries. Usually the lowpass filter can remove them. However, simple lowpass filter results into blur by removing important information such as edges at the same time. To overcome these problems, we propose a novel postfiltering algorithm that calculate the weight value based on the intensity similarity in the neighboring pixels and multiply this weight to the Gaussian lowpass filter coefficient. Experimental results show that the proposed technique provides satisfactory performance in both objective and subjective image quality.

New Intra Coding Scheme for High-definition Video Coding (고화질 비디오 부호화를 위한 새로운 화면내 부호화 방법)

  • Heo, Jin;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.72-78
    • /
    • 2008
  • Although the H.264 video coding scheme is popular, it is not efficient for high-definition (HD) video coding because the size of its macroblock is relatively small for the HD video resolution. In this paper, we propose a new intra coding scheme based on the enlarged macroblock size. For the luminance component, intra $4{\times}4$ prediction and intra $16{\times}16$ prediction in H.264 are scaled into intra $8{\times}8$ prediction and intra $32{\times}32$ prediction, respectively. For the chrominance components, intra $8{\times}8$ prediction is extended to intra $16{\times}16$ prediction. Along with the $8{\times}8$ basic coding block size, an $8{\times}8$ integer discrete cosine transform (DCT) is used. Experimental results show that the proposed algorithm improves coding efficiency of the intra coding for HD video: PSNR gain by 0.23dB and bit-rate reduction by 5.32% on average.

Postprocessing of Inter-Frame Coded Images Based on Convex Projection and Regularization (POCS와 정규화를 기반으로한 프레임간 압출 영사의 후처리)

  • Kim, Seong-Jin;Jeong, Si-Chang;Hwang, In-Gyeong;Baek, Jun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.58-65
    • /
    • 2002
  • In order to reduce blocking artifacts in inter-frame coded images, we propose a new image restoration algorithm, which directly processes differential images before reconstruction. We note that blocking artifact in inter-frame coded images is caused by both 8$\times$8 DCT and 16$\times$16 macroblock based motion compensation, while that of intra-coded images is caused by 8$\times$8 DCT only. According to the observation, we Propose a new degradation model for differential images and the corresponding restoration algorithm that utilizes additional constraints and convex sets for discontinuity inside blocks. The proposed restoration algorithm is a modified version of standard regularization that incorporate!; spatially adaptive lowpass filtering with consideration of edge directions by utilizing a part of DCT coefficients. Most of video coding standard adopt a hybrid structure of block-based motion compensation and block discrete cosine transform (BDCT). By this reason, blocking artifacts are occurred on both block boundary and block interior For more complete removal of both kinds of blocking artifacts, the restored differential image must satisfy two constraints, such as, directional discontinuities on block boundary and block interior Those constraints have been used for defining convex sets for restoring differential images.

Image Contrast Enhancement using Adaptive Unsharp Mask and Directional Information (방향성 정보와 적응적 언샾 마스크를 이용한 영상의 화질 개선)

  • Lee, Im-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.27-34
    • /
    • 2011
  • In this paper, the novel approach for image contrast enhancement is introduced. The method is based on the unsharp mask and directional information of images. Since the unsharp mask techniques give better visual quality than the conventional sharpening mask, there are much works on image enhancement using unsharp masks. The proposed algorithm decomposes the image to several blocks and extracts directional information using DCT. From the geometric properties of the block, each block is labeled as appropriate type and processed by adaptive unsharp mask. The masking process is skipped at the flat area to reduce the noise artifact, but at the texture and edge area, the adaptive unsharp mask is applied to enhance the image contrast based on the edge direction. Experiments show that the proposed algorithm produces the contrast enhanced images with superior visual quality, suppressing the noise effects and enhancing edge at the same time.

DCT Based Watermarking Technique Using Region of Interest (관심영역을 이용한 DCT기반 워터마킹 기법)

  • Shin, Jae-Wook;Jeong, Dong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.16-26
    • /
    • 2000
  • The proposed method inserts a watermark information not mto a whole Image region but only into regions of interest(ROIs) To extract the ROIs, we divide an original Image into sub-blocks and use modified Shi-Kuo Chang's PIM(picture information measure) as the criteria to select the ROIs Considering the directional information and frequency bands, we insert the watermark information into sub-blocks m the DCT domain. The proposed method can reduce the distortion in comparison With the other methods which utilize the whole Image as an nor The proposed method makes much less damaged Images m comparison to the other methods And those Images processed by the proposed algorithm are more robust to the changes caused by signal processing operations such as resampling, clipping. noise, and so on Also due to the block-based watermark insertion, the proposed method has the robustness to the Image compression processes such as JPEG and MPEG.

  • PDF

2-D DCT/IDCT Processor Design Reducing Adders in DA Architecture (DA구조 이용 가산기 수를 감소한 2-D DCT/IDCT 프로세서 설계)

  • Jeong Dong-Yun;Seo Hae-Jun;Bae Hyeon-Deok;Cho Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.48-58
    • /
    • 2006
  • This paper presents 8x8 two dimensional DCT/IDCT processor of adder-based distributed arithmetic architecture without applying ROM units in conventional memories. To reduce hardware cost in the coefficient matrix of DCT and IDCT, an odd part of the coefficient matrix was shared. The proposed architecture uses only 29 adders to compute coefficient operation in the 2-D DCT/IDCT processor, while 1-D DCT processor consists of 18 adders to compute coefficient operation. This architecture reduced 48.6% more than the number of adders in 8x8 1-D DCT NEDA architecture. Also, this paper proposed a form of new transpose network which is different from the conventional transpose memory block. The proposed transpose network block uses 64 registers with reduction of 18% more than the number of transistors in conventional memory architecture. Also, to improve throughput, eight input data receive eight pixels in every clock cycle and accordingly eight pixels are produced at the outputs.