• Title/Summary/Keyword: Bloch spaces

Search Result 45, Processing Time 0.018 seconds

FATOU THEOREM AND EMBEDDING THEOREMS FOR THE MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL

  • Cho, Hong-Rae;Lee, Jin-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • We investigate the boundary values of the holomorphic mean Lipschitz function. In fact, we prove that the admissible limit exists at every boundary point of the unit ball for the holomorphic mean Lipschitz functions under some assumptions on the Lipschitz order. Moreover, we get embedding theorems of holomorphic mean Lipschitz spaces into Hardy spaces or into the Bloch space on the unit ball in $\mathbb{C}_n$.

LITTLE HANKEL OPERATORS ON WEIGHTED BLOCH SPACES IN Cn

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.469-479
    • /
    • 2003
  • Let B be the open unit ball in $C^{n}$ and ${\mu}_{q}$(q > -1) the Lebesgue measure such that ${\mu}_{q}$(B) = 1. Let ${L_{a,q}}^2$ be the subspace of ${L^2(B,D{\mu}_q)$ consisting of analytic functions, and let $\overline{{L_{a,q}}^2}$ be the subspace of ${L^2(B,D{\mu}_q)$) consisting of conjugate analytic functions. Let $\bar{P}$ be the orthogonal projection from ${L^2(B,D{\mu}_q)$ into $\overline{{L_{a,q}}^2}$. The little Hankel operator ${h_{\varphi}}^{q}\;:\;{L_{a,q}}^2\;{\rightarrow}\;{\overline}{{L_{a,q}}^2}$ is defined by ${h_{\varphi}}^{q}(\cdot)\;=\;{\bar{P}}({\varphi}{\cdot})$. In this paper, we will find the necessary and sufficient condition that the little Hankel operator ${h_{\varphi}}^{q}$ is bounded(or compact).

LIPSCHITZ CONTINUOUS AND COMPACT COMPOSITION OPERATOR ACTING BETWEEN SOME WEIGHTED GENERAL HYPERBOLIC-TYPE CLASSES

  • Kamal, A.;El-Sayed Ahmed, A.;Yassen, T.I.
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.647-662
    • /
    • 2016
  • In this paper, we study Lipschitz continuous, the boundedness and compactness of the composition operator $C_{\phi}$ acting between the general hyperbolic Bloch type-classes ${\mathcal{B}}^{\ast}_{p,{\log},{\alpha}}$ and general hyperbolic Besov-type classes $F^{\ast}_{p,{\log}}(p,q,s)$. Moreover, these classes are shown to be complete metric spaces with respect to the corresponding metrics.