• 제목/요약/키워드: Blind Signal Separation

검색결과 69건 처리시간 0.02초

개선된 정준상관분석을 이용한 신호 분리 알고리듬 (Improved Blind Signal Separation Based on Canonical Correlation Analysis)

  • 강동훈;이용욱;오왕록
    • 대한전자공학회논문지SP
    • /
    • 제49권4호
    • /
    • pp.105-110
    • /
    • 2012
  • 정준상관분석 (canonical correlation analysis, CCA)은 두 변수집단 사이의 선형 관계를 측정하는 확률적 분석 기법으로 이를 이용하여 다수의 신호가 혼재되어 수신된 신호로부터 각각의 신호원을 분리하는 것이 가능하다. 기존에 CCA와 자기회귀(auto regressive) 기법을 이용하여 혼재된 신호를 분리하는 기법이 제안되었으나 신호원 분리를 효과적으로 수행하기 위해서는 높은 신호 대 잡음비 (signal-to-noise ratio)가 요구되는 문제가 있다. 본 논문에서는 자기회귀 기법의 파라미터 계산시 잡음성분이 포함되어있는 자기공분산 행렬의 주대각 원소를 제거하여 잡음의 영향을 최소화하고 이를 통하여 신호원 분리 성능을 개선하는 방안을 제안한다. 제안하는 기법은 기존에 제안된 CCA와 자기회귀을 이용한 신호 분리 기법에 비하여 더 우수한 신호 분리 성능을 보일 뿐 만 아니라 신호원 분리 과정에서 요구되는 계산량을 줄일 수 있다.

신경회로망 ICA를 이용한 혼합영상신호의 분리 (Blind Image Separation with Neural Learning Based on Information Theory and Higher-order Statistics)

  • 조현철;이권순
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1454-1463
    • /
    • 2008
  • Blind source separation by independent component analysis (ICA) has applied in signal processing, telecommunication, and image processing to recover unknown original source signals from mutually independent observation signals. Neural networks are learned to estimate the original signals by unsupervised learning algorithm. Because the outputs of the neural networks which yield original source signals are mutually independent, then mutual information is zero. This is equivalent to minimizing the Kullback-Leibler convergence between probability density function and the corresponding factorial distribution of the output in neural networks. In this paper, we present a learning algorithm using information theory and higher order statistics to solve problem of blind source separation. For computer simulation two deterministic signals and a Gaussian noise are used as original source signals. We also test the proposed algorithm by applying it to several discrete images.

Speech Enhancement Using Receding Horizon FIR Filtering

  • Kim, Pyung-Soo;Kwon, Wook-Hyu;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.7-12
    • /
    • 2000
  • A new speech enhancement algorithm for speech corrupted by slowly varying additive colored noise is suggested based on a state-space signal model. Due to the FIR structure and the unimportance of long-term past information, the receding horizon (RH) FIR filter known to be a best linear unbiased estimation (BLUE) filter is utilized in order to obtain noise-suppressed speech signal. As a special case of the colored noise problem, the suggested approach is generalized to perform the single blind signal separation of two speech signals. It is shown that the exact speech signal is obtained when an incoming speech signal is noise-free.

  • PDF

FIR MIMO 시스템을 위한 부밴드 적응 블라인드 등화 알고리즘 (A Subband Adaptive Blind Equalization Algorithm for FIR MIMO Systems)

  • 손상욱;임영빈;최훈;배현덕
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.476-483
    • /
    • 2010
  • If the data are pre-whitened, then gradient adaptive algorithms which are simpler than higher order statistics algorithms can be used in adaptive blind signal estimation. In this paper, we propose a blind subband affine projection algorithm for multiple-input multiple-output adaptive equalization in the blind environments. All of the adaptive filters in subband affine projection equalization are decomposed to polyphase components, and the coefficients of the decomposed adaptive sub-filters are updated by defining the multiple cost functions. An infinite impulse response filter bank is designed for the data pre-whitening. Pre-whitening procedure through subband filtering can speed up the convergence rate of the algorithm without additional computation. Simulation results are presented showing the proposed algorithm's convergence rate, blind equalization and blind signal separation performances.

Blind Source Separation U sing Variable Step-Size Adaptive Algorithm in Frequency Domain

  • Park Keun-Soo;Lee Kwang-Jae;Park Jang-Sik;Son Kyung Sik
    • 한국멀티미디어학회논문지
    • /
    • 제8권6호
    • /
    • pp.753-760
    • /
    • 2005
  • This paper introduces a variable step-size adaptive algorithm for blind source separation. From the frequency characteristics of mixed input signals, we need to adjust the convergence speed regularly in each frequency bin. This algorithm varies a step-size according to the magnitude of input at each frequency bin. This guarantee of the regular convergence in each frequency bin would become more efficient in separation performances than conventional fixed step-size FDICA. Computer simulation results show the improvement of about 5 dB in signal to interference ratio (SIR) and the better separation quality.

  • PDF

Experimental study on bridge structural health monitoring using blind source separation method: arch bridge

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.69-87
    • /
    • 2014
  • A new output only modal analysis method is developed in this paper. This method uses continuous wavelet transform to modify a popular blind source separation algorithm, second order blind identification (SOBI). The wavelet modified SOBI (WMSOBI) method replaces original time domain signal with selected time-frequency domain wavelet coefficients, which overcomes the shortcomings of SOBI. Both numerical and experimental studies on bridge models are carried out when there are limited number of sensors. Identified modal properties from WMSOBI are analyzed and compared with fast Fourier transform (FFT), SOBI and eigensystem realization algorithm (ERA). The comparison shows WMSOBI can identify as many results as FFT and ERA. Further case study of structural health monitoring (SHM) on an arch bridge verifies the capability to detect damages by combining WMSOBI with incomplete flexibility difference method.

Output only system identification using complex wavelet modified second order blind identification method - A time-frequency domain approach

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.369-378
    • /
    • 2021
  • This paper reviewed a few output-only system identification algorithms and identified the shortcomings of those popular blind source separation methods. To address the issues such as less sensors than the targeted modal modes (under-determinate problem), repeated natural frequencies as well as systems with complex mode shapes, this paper proposed a complex wavelet modified second order blind identification method (CWMSOBI) by transforming the time domain problem into time-frequency domain. The wavelet coefficients with different dominant frequencies can be used to address the under-determinate problem, while complex mode shapes are addressed by introducing the complex wavelet transformation. Numerical simulations with both high and low signal-to-noise ratios validate that CWMSOBI can overcome the above-mentioned issues while obtaining more accurate identified results than other blind identification methods.

Audio Watermarking Using Independent Component Analysis

  • Seok, Jong-Won
    • Journal of information and communication convergence engineering
    • /
    • 제10권2호
    • /
    • pp.175-180
    • /
    • 2012
  • This paper presents a blind watermark detection scheme for an additive watermark embedding model. The proposed estimation-correlation-based watermark detector first estimates the embedded watermark by exploiting non-Gaussian of the real-world audio signal and the mutual independence between the host-signal and the embedded watermark and then a correlation-based detector is used to determine the presence or the absence of the watermark. For watermark estimation, blind source separation (BSS) based on independent component analysis (ICA) is used. Low watermark-to-signal ratio (WSR) is one of the limitations of blind detection with the additive embedding model. The proposed detector uses two-stage processing to improve the WSR at the blind detector; the first stage removes the audio spectrum from the watermarked audio signal using linear predictive (LP) filtering and the second stage uses the resulting residue from the LP filtering stage to estimate the embedded watermark using BSS based on ICA. Simulation results show that the proposed detector performs significantly better than existing estimation-correlationbased detection schemes.

MIMO LTI 채널에서의 블라인드 신호분리시의 식별성에 대한 고찰 (A Consideration on the Identifiability for Blind Signal Separation in MIMO LTI Channels)

  • 권순만;김석주;이종무;김춘경;조창희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.265-267
    • /
    • 2004
  • A blind separation problem in a multiple-input-multiple-output (MIMO) linear time-invariant (LTI) system with finite-alphabet inputs is considered. A discrete-time matrix equation model is used to describe the input-output relation of the system in order to make full use of the advantages of modern digital signal processing techniques. At first, ambiguity problem is investigated. Then, based on the results of the investigation, a new identifiability condition is proposed for the case of an input-data set which is widely used in digital communication. A probability bound such that an arbitrary input matrix satisfies the identifiability condition is derived. Finally, Monte-Carlo simulation is performed to demonstrate the validity of our suggestions.

  • PDF

Blind Source Separation of Instantaneous Mixture of Delayed Sources Using High-Order Taylor Approximation

  • Zhao, Wei;Yuan, Zhigang;Shen, Yuehong;Cao, Yufan;Wei, Yimin;Xu, Pengcheng;Jian, Wei
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.727-735
    • /
    • 2015
  • This paper deals with the problem of blind source separation (BSS), where observed signals are a mixture of delayed sources. In reference to a previous work, when the delay time is small such that the first-order Taylor approximation holds, delayed observations are transformed into an instantaneous mixture of original sources and their derivatives, for which an extended second-order blind identification (SOBI) approach is used to recover sources. Inspired by the results of this previous work, we propose to generalize its first-order Taylor approximation to suit higher-order approximations in the case of a large delay time based on a similar version of its extended SOBI. Compared to SOBI and its extended version for a first-order Taylor approximation, our method is more efficient in terms of separation quality when the delay time is large. Simulation results verify the performance of our approach under different time delays and signal-to-noise ratio conditions, respectively.