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This paper deals with the problem of blind source 
separation (BSS), where observed signals are a mixture of 
delayed sources. In reference to a previous work, when  
the delay time is small such that the first-order Taylor 
approximation holds, delayed observations are 
transformed into an instantaneous mixture of original 
sources and their derivatives, for which an extended 
second-order blind identification (SOBI) approach is used 
to recover sources. Inspired by the results of this previous 
work, we propose to generalize its first-order Taylor 
approximation to suit higher-order approximations in the 
case of a large delay time based on a similar version of its 
extended SOBI. Compared to SOBI and its extended 
version for a first-order Taylor approximation, our 
method is more efficient in terms of separation quality 
when the delay time is large. Simulation results verify the 
performance of our approach under different time delays 
and signal-to-noise ratio conditions, respectively. 
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I. Introduction 

Blind source separation (BSS) has been applied in a variety 
of fields in recent decades, such as telecommunication, speech 
processing, array processing, passive sonar, seismic exploration, 
and so on [1]. In the case of a linear multiple-input and 
multiple-output instantaneous system, BSS corresponds to 
independent component analysis (ICA), which is now a widely 
recognized concept [2].  

However, ICA is not suitable for practical application, since 
observed signals are not only linear and instantaneous but are  
a convolutive mixture of sources [3]; for example, wireless 
communication signals received by antennas are usually 
composed of delay and reflected echoes of transmitted sources. 
The propagation time of each speaker’s voice to different 
microphones at a cocktail party differs, obviously. Similarly, 
myoelectric signals recorded in multiple locations over the 
surface of a person’s skin are not only attenuated by a volume 
conductor but also represent delayed versions of source signals 
because of the propagation of the intracellular potentials along 
the person’s muscle fibers. In fact, the observed signals of the 
sources in these practical applications can be modeled, in 
general, as a convolutive mixture.  

In this paper, we consider a particular case of the general 
convolutive mixture problem: instantaneous mixtures of 
delayed sources, which can be seen as a special case of the 
convolution model — a very common model in BSS. 

The observed signals T
1 2( ) [ ( ), ( ), , ( )]Mt x t x t x tx   

composed of delayed source signals can be modeled as 
( ) ( ) ( ),t t t  x As p             (1) 

Blind Source Separation of Instantaneous Mixture of 
Delayed Sources Using 

High-Order Taylor Approximation 

 Wei Zhao, Zhigang Yuan, Yuehong Shen, Yufan Cao, Yimin Wei, Pengcheng Xu, and Wei Jian 



728   Wei Zhao et al. ETRI Journal, Volume 37, Number 4, August 2015 
http://dx.doi.org/10.4218/etrij.15.0114.0527 

where A is an M × N mixing matrix, the delayed sources 
T

1 1 2 2( ) [ ( ), ( ), , ( )] ,N Nt s t s t s t       s  where 1, ,    

N  are the time delays, and the receiver noise vector 
T

1 2( ) [ ( ), ( ), , ( )] .Mt p t p t p tp  Each component of a 

mixed-signals vector can be formulated as 

1

( ) ( ) ( ), 1, 2, , ,
N

i ij j ij i
j

x t a s t t p t i M


          (2) 

where tij is the delayed time of sources, N is the number of 
source signals, M is the number of mixed signals, and aij is an 
element of A. Equation (2) is the “instantaneous mixture of 
delayed sources” model considered in this paper. Note that the 
value of the time delay tij will, in general, differ from source to 
source. In other words, the instantaneous mixture of delayed 
sources model in this paper includes the case where the time 
delay tij is the same for any two or more given sources. 

As far as we know, there are a few works [4]–[7] concerning 
BSS of delayed sources. For example, stochastic time-
frequency analysis algorithms have been proposed in [6]–[7], 
and truncated Taylor series expansion algorithms have been 
explored in [4]–[6]. As shown in [6], if the delay is small, as in 

d

max

1
,

2
ijt t

f



               (3)  

where fmax is the maximum frequency of sources, then the 
delayed observations can be transformed into an instantaneous 
mixture of original sources and their derivatives by using     
a first-order Taylor approximation. A first-order Taylor 
approximation of (2) can be formulated by 

(1)

1 1

( ) ( ) ( ) ( ), 1,2, , ,
N N

i ij j ij ij j i
j j

x t a s t a t s t p t i M
 

      (4) 

where (1)( ) ( ) ( )j ij j ij js t t s t t s t    is applied in (2) and  
(1) ( )js t  is the first-order derivative of ( ).js t  The sources are 

recovered by extending the second-order blind identification 

(SOBI) approach of [8] and [9], which exploits the spatial 

covariance matrix or spatial time-frequency representation of 

whitened observations to recover sources through identification 

of a rotation matrix.  
Inspired by [6], we propose to deal with the blind separation 

of delayed sources in the case of large delay using high-order 
Taylor approximations based on a similar extended version of 
the SOBI approach found in [6], [8], and [9]. In the noiseless 
case, our proposed method outperforms other corresponding 
approaches in terms of separation quality when the delay is 
large. When noise is introduced, our method provides 
approximately identical performance to the aforementioned 
corresponding approaches in the case of small delay but 
performs much better in the case of large delay, which validates 

the robustness of our method. A performance comparison and 
analysis are investigated through simulations. 

This paper is organized as follows. Section II introduces our 

proposed high-order Taylor approximation procedure, in which 

an extended version of a SOBI approach including whitening 

and rotation is presented. The simulation results and analysis 

are performed in Section III. Section IV concludes this paper. 

II. High-Order Taylor Approximation 

Similar to the first-order approximation in (4) in [6], a high-
order Taylor expansion is denoted by 

2
(1) (2)

1 1 1

3
(3) ( )

1 1
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t t
a s t a s t p t

n

i M

  

 

  

   



  

 



 (5) 

where ( ) ( )n
js t  is the nth-order derivative of ( ).js t  Then,  

the delayed source vector, ( ),t s can be extended as ( )t s  
(1) (1) ( ) ( ) T

1 1 1[ ( ), , ( ), ( ), , ( ), , ( ), , ( )] ,n n
N N Ns t s t s t s t s t s t     

and mixing matrix A can be extended to A  as 

0 1 2 ,n   A A A A A           (6) 

where  
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( 1)
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      (7) 

Finally, we can reformulate the time-delayed BSS model as 

an “instantaneous mixture of original sources and their nth-

order derivatives” model; that is, ( ) ( ) ( ),t t t x As p  in 

which ( ) [ ( ), ( ), , ( )].t t t tp p p p  Note that the number of 

sources increases to (n + 1)N equivalently; so, we assume that 

( 1)M n N   to ensure the separability of algorithms in this 

paper.  
To recover sources successfully by using the SOBI approach, 

we make the following two assumptions: 
■ The sources are mutually uncorrelated; have zero-mean and 
unit variance; and are of different spectra. More precisely, the 
source vector is spatially white and normalized in power; that is, 

E{ } 0, ,i js s i j  E{ } 0,is  2E{ } 1.is   

■ The noise vector is mutually uncorrelated, and the 
components of the source vector and elements of the noise 
vector are also mutually uncorrelated; that is, 
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E{ } 0, ,i jp p i j   E{ } 0, , 1, , ,i jp s i j N    

where E{ }  denotes the expectation value. 
As previous researches have indicated, [6], [8], and [9], this 

kind of BSS problem can be solved in two steps: (1) whitening 
and (2) rotation. Whitening consists of deriving a matrix that 
whitens observations at zero time lag (it is equivalent to 
principal component extraction, but with normalization of the 
variances of components); rotation allows for recovery of 
sources from the whitened observation. 

1. Whitening 

The covariance matrix of ( )ts  can be formulated as 

(1) ( )

(1) (1) (1) (1) ( )

( ) ( ) (1) ( ) ( )

R ( ) R ( ) R ( )

R ( ) R ( ) R ( )
R ( ) ,

R ( ) R ( ) R ( )

n

n

n n n n

  
  



  

 
 
   
 
  

s




   


ss ss ss

s s s s s s

s s s s s s

   (8)                    

where 

1 1 2 2
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s s
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  (9) 

As shown in [10], we can draw the following conclusions: 
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    (10) 

 Since ( )R (0) 0, 1,2, , ,
i i

m
s s m n    we obtain R ( )

s
 

for 0   by putting (9) and (10) into (8). 

(1) (1)

( ) ( )

0 0

0 R (0) 0
R (0) ,

0 0

0 R (0)n n

 
 
   
 
  

s
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s s

s s

      (11)  

which means R (0)
s

 is diagonal. However, note that R ( )
s

 
is, in general, not diagonal for nonzero lags. Based on the 
above analysis, the covariance matrix for the observed signals 
can be expressed as 

T

T 2

R ( ) [ ( ) ( ) ]

R ( ) ( ) .p

t t 

 

 

   
x

s

x x

A A I
         (12)                    

In the case of 0,   we have 
T 2R (0) R (0) p  x s

A A I ,          (13) 

where 2
p  is the noise variance. Because R (0)

s
 is diagonal, 

we can use the eigenvalue decomposition of R (0)x  to 

estimate both the noise variance and the whitening matrix, W, 

as done in the SOBI approach in [8]. As shown in [6], we   

can obtain the noise variance by taking the average of       

M – (n + 1)N smallest eigenvalues of R (0).x  

 2

( 1) 1

1

( 1)

M

p i
i n NM n N


  

 
   ,          (14) 

where i  are descending-ordered eigenvalues of R (0).x  
Then, the whitening matrix W can be estimated as 
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,          (15)           

where hi are the corresponding eigenvectors of .i  

Now we get the whitened observation ( ) ( )t ty Wx  and 

its covariance, which is denoted by 

 T T 2R ( ) R ( ) ( )p     y s
WA A W I .     (16)           

2. Rotation 

Since the covariance matrix for the observed signals R ( )x  
is not diagonal for 0  , classical rotation, which consists of 
diagonalization [11] and joint diagonalization [8], cannot be 
applied to our extended model in (5). In this paper, we use the 
auto-covariance equalization approach (Rtau Delay) proposed 
in [6] to recover sources from the whitened observation.  

From (10), we know ( ) ( )R ( ) R ( ) 0m m
i ii is s s s

    when m is 

odd. However, under our two aforementioned assumptions, 

sources are mutually uncorrelated so that the covariance matrix 

R ( )
i is s   can be approximately seen as constant. Under this 

approximate assumption, ( ) ( )R ( ) R ( ) 0m m
i ii is s s s

    when m 

takes an even value. Similar to the Rtau Delay approach in [6], 

we construct a diagonal matrix by combining R ( )
s

 and its 

transpose as follows: 

(1) (1)

( ) ( )

T

R ( ) 0 0

0 R ( ) 0R ( ) R ( )

2

0 0 R ( )n n


 



 
     
 
  

s s




   


ss

s s

s s

. (17) 

Then, elaborating from (16), we obtain 
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(1) (1)

( ) ( )

T

T T

R ( ) R ( )
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0 0 R ( )n n

 








 
 
   
 
  

y y

WA A W




   


ss

s s
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  (18) 

Therefore, we can see that WA is a unitary matrix [8]–[9] from 
the whitening. This unitary matrix can be estimated by the  
joint diagonalization of TR ( ) R ( ) y y  at multiple nonzero 
delays from (18).  

Finally, after whitening and rotation, we can identify N pairs 
of original sources and their respective derivatives by cross 
correlation between reconstructed signals in the extended 
source vector. Then, for each identified pair, the signal with 
lower median frequency is identified as the original source. 

III. Simulation Results and Analysis 

In this section, we choose two (N = 2) band-limited Gaussian 
noise signals with different but overlapping spectra, with zero-
mean and unit variance. The sample rate is set at 1,024 Hz and 
the number of samples is 8,129. For more reliable and 
reasonable simulation results, we conducted 500 independent 
Monte Carlo runs for each simulation, in which the mixing 
matrix is chosen randomly. The maximum bandwidth of the 
sources is fmax = 350 Hz; and the corresponding delay is      
td = 0.64 ms (according to (3)). The cross-correlation index 
(CCI) and mean square error (MSE) are chosen as the 
performance criteria, in which the CCI is the average of the 
maximal values of the normalized cross-correlation functions 
between the actual sources and the corresponding algorithm 
estimations, which is denoted by 

 
1

1
CCI max R .

j j

N

s s
iN 

             (19)                           

Because a high-order Taylor approximation creates a 
computational complexity, we only apply a sixth-order Taylor 
approximation in this paper — the performance of which is 
compared with those of SOBI in [8] and Rtau Delay in [6]. 

1. Simulation 1 

In this section, the maximal delays (delays were simulated 
randomly between 0 and the maximum value Td) in the 
mixtures were 0 td, 0.3 td, 0.6 td, 0.9 td, 1 td, 2 td, 3 td, 4 td, 5 td,  
6 td, 7 td, 8 td, 9 td, and 10 td. The time delay of the sources for 
different mixtures is chosen randomly under the condition 

dijt T . In addition, we conducted simulations under the 

 

Fig. 1. (a) SNR = , performance index is average maximum 
value of cross-correlation functions (in %) between two 
sources and their corresponding estimations averaged 
over 500 Monte Carlo runs and (b) magnified plot of (a) 
for maximal delays Td = 0 td – 1 td. 
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conditions of SNR = ∞ and SNR = 10 dB; the CCI and MSE 
of which are illustrated in Figs. 1 through 4.  

Figures 1 and 2 clearly show that the CCI and MSE values 
of SOBI and Rtau Delay are slightly larger than those of our 
proposed high-order approach when the delay is small. This 
can be seen more clearly in Figs. 1(b) and 2(b), which are 
magnified plots for maximal delays Td = 0 td – 1 td. For instance, 
when the delay is 1 td, SOBI and Rtau Delay perform better 
than our method in terms of CCI and MSE. 

However, when the delay increases, the advantage of our 
method becomes more apparent, which can be clearly seen in 
Figs. 1(a) and 2(a). For example, when the delay is 4 td, the 
CCI of our proposed approach is much larger than in SOBI and 
Rtau Delay. More precisely, when the delay is 5 td, all high-
order approximations, from the second-order to the sixth-order, 
can realize about 90% of the maximum CCI, whereas SOBI 
can realize about 68%; and Rtau Delay, about 76%. 
Furthermore, when the delay is larger than 4 td, the MSE of our 
approach is very close to that of SOBI and Rtau Delay. When 
the delay is 6 td, as shown in Fig. 2, our method is slightly 
better than the other two approaches in terms of MSE. 
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Fig. 2. (a) SNR = , performance index is MSE between two 
sources and their corresponding estimations averaged 
over 500 Monte Carlo runs and (b) magnified plot of (a) 
for maximal delays Td = 0 td – 1 td. 
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As Fig. 1 shows, note that each different nth-order Taylor 
expansion, under our method, provides a different CCI for a 
different time delay. When the delay is 2 td, the second-order 
expansion has the best performance, and when the delay is 4 td, 
the third-order expansion performs the best. When the delay 
varies from 7 td to 10 td, the sixth-order has the best 
performance. This phenomenon is caused by the assumption 
that the correlation between sources becomes weak when the 
delay is long. In addition, from Fig. 1, we can see that a larger-
order approximation outperforms a lower-order expansion 
when the delay increases, which results from the approximate 
diagonalization of R ( ).x  We will discuss this problem in a 
future study. 

From Figs. 3 and 4, when white Gaussian noise is considered, 
we can see clearly that the CCI and MSE values of our 
proposed method are very similar to those of SOBI and Rtau 
Delay when the delay is small, which can be seen more clearly 
in Fig. 3(b) and Fig. 4(b), which are magnified plots for the 
maximum delays Td = 0 td –1 td. However, when the delay is 
large, our proposed high-order approximation outperforms the 
other two approaches, which is shown clearly in Figs. 3(b) and  

 

Fig. 3. (a) SNR = 10 dB, performance index is average 
maximum value of cross-correlation functions (in %) 
between two sources and their corresponding 
estimations averaged over 500 Monte Carlo runs and (b) 
magnified plot of (a) for maximal delays Td = 0 td – 1 td.
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4(b). More specifically, when the delay varies from 0 td to 1 td, 
our method performs very close to that of SOBI and Rtau 
Delay in terms of CCI and MSE. Conversely, when the delay is 
more than 2 td, our method shows a better CCI and MSE 
performance than SOBI and Rtau Delay. In addition, it should 
be noted that the larger the order expansion, the better the 
performance achieved.  

Comparing Figs. 1 through 4, we can conclude that our 
method is more robust against outside noise. Under a brief 
delay, our method performs worse than SOBI and Rtau Delay, 
as shown in Figs. 1 and 2. However, when noise is introduced, 
our approach performs nearly as well as SOBI and Rtau Delay 
under a short delay, as shown in Figs. 3 and 4. Moreover, a 
larger-order expansion shows greater robustness. For instance, 
a six-order expansion performs the best only when the delay is 
longer than 7 td, as shown in Fig. 1, but it performs the same 
when the delay is longer than 3 td. In other words, our high-
order approximation approach is more robust than SOBI and 
Rtau Delay, and the higher the order, the more robust it is.  

It is well accepted that the computational complexity of the 
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Fig. 4. (a) SNR = 10 dB, performance index is MSE between two 
sources and their corresponding estimations averaged 
over 500 Monte Carlo runs, and (b) magnified plot of (a) 
for maximal delays Td = 0 td – 1 td. 
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Taylor series approximation increases enormously when the 
order is higher. Although a high-order expansion can provide  
a better performance, especially when noise is present, the 
computational complexity caused by a high-order Taylor 
approximation needs to be seriously considered. For this reason, 
we apply only a sixth-order expansion in this paper. To 
compare the computational complexity of our method against 
SOBI and Rtau Delay, we implemented them under the same 
conditions shown in Figs. 1 and 2 for different numbers of 
samples from 1,024 to 8,192; the results of which are illustrated 
in Fig. 5. The execution time was chosen for the measurement 
criterion, and the computer used is an Intel (R) Core ™ 2 Duo 
CPU, E8400 @ 3.0 GHz and 2.99 GHz, with 3.00 GB of 
RAM. 

As shown in Fig. 5, we performed 500 independent runs, 
and the total runtime was recorded for different numbers of 
samples. The results show that the execution time varies for 
different approaches and sample sizes. More precisely, when 
the number of samples is fixed, say at 1,024, the second-order 
expansion of our method needs approximately the same 
amount of time as SOBI and Rtau Delay, whereas the time 

 

Fig. 5. SNR = ; performance index is total execution time for 
recovering two sources over 500 Monte Carlo runs. In 
horizontal axes, 10 through 13 denote 210 through 213, i.e., 
1,024 to 8,192. 
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required for the other nth-order expansions increases with an 
increase in the order. For example, the time for a sixth-order is 
about six times that of Rtau Delay. When the number of 
samples increases, the execution time for all methods also 
increases. When the sample size is 8,192, the time required for 
SOBI, Rtau Delay, and a second-order is about 580 s, whereas 
that for the third-order to sixth-order approximations is about 
780 s, 980 s, 1,200 s, and 1,580 s, respectively. Actually, it 
should be noted that the difference between Rtau Delay and the 
sixth-order is only about 1,000 s. If we average the difference 
over 500 runs, the difference in time for every run is only 
around 2 s, which is quite acceptable when the time demand is 
not very strict. Similarly, the times required for the second-
order to fifth-order approximations as compared to that of Rtau 
Delay are also reasonable. Note that we only apply a sixth-
order approximation in this paper, and an expansion higher 
than the sixth-order is also acceptable and feasible. 

2. Simulation 2 

From simulation 1, we determined that noise has an 
influence on the performance of SOBI, Rtau Delay, and our 
proposed method. To validate the performance of our approach 
more comprehensively, we conducted simulation experiments 
by changing the SNR from –10 dB to 15 dB and keeping the 
delay fixed at either 0.6 td or 8 td. The results are shown in  
Figs. 6 through 9. 

As shown in Figs. 6 and 7, the advantage of our proposed 
approach is very apparent over SOBI and Rtau Delay, 
especially when the SNR is low. When the SNR is lower than 
5 dB, the CCI of SOBI and Rtau Delay is about 0.55 and the 
MSE is more than –2 dB; in this case, the performance is much 
worse and the sources cannot be successfully recovered. 
However, under the same conditions, our approach can provide 
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Fig. 6. Td = 0.6 td, SNR = –10 dB to 15 dB; performance index is 
average maximum value of cross-correlation functions 
(in %) between two sources and their corresponding 
estimations averaged over 500 Monte Carlo runs. 
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Fig. 7. Td = 0.6 td, SNR = –10 dB to 15 dB; performance index 
is MSE between two sources and their corresponding 
estimations averaged over 500 Monte Carlo runs. 
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a much better performance. For instance, when the SNR =    
0 dB, the CCI of the sixth-order is about 0.9 and the MSE is 
about –6 dB. Thus, our proposed high-order expansion 
outperforms both SOBI and Rtau Delay at a low SNR, despite 
the short delay. 

When the delay is large, we can see from Figs. 8 and 9 that 
the CCI and MSE of our method are better than those of SOBI 
and Rtau Delay with a change in SNR. More precisely, the CCI 
of SOBI and Rtau Delay at –10 dB is about 0.65 and 0.66, 
respectively, and about 0.65 and 0.71 at 15 dB. Similarly, their 
MSE does not change significantly. Conversely, the CCI of the 
third-order approximation of our method reaches about 0.75 at 
–10 dB, whereas that of the sixth-order approximation reaches 
about 0.85 at 15 dB. This is also true for the MSE of our 
approach; that is, a higher-order approximation with an 
increase in the SNR provides a better performance than SOBI 
and Rtau Delay. 

Finally, compared with simulations 1 and 2, we can draw the 
conclusion that a high-order Taylor series expansion approach 

 

Fig. 8. Td = 8 td, SNR = –10 dB to 15 dB; performance index is 
average maximum value of cross-correlation functions 
(in %) between two sources and their corresponding 
estimations averaged over 500 Monte Carlo runs. 
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Fig. 9. Td = 8 td, SNR = –10 dB to 15 dB; performance index is 
MSE between two sources and their corresponding 
estimations averaged over 500 Monte Carlo runs 
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is more robust than SOBI and Rtau Delay, especially when the 
SNR is low. In other words, the advantage of our proposed 
method over SOBI and Rtau Delay under a lengthy delay is 
extended to a short delay when noise is present. 

IV. Conclusion 

In this paper, we proposed an extension of a first-order 
Taylor approximation to a higher order to solve the blind 
separation of delayed sources based on the SOBI approach. We 
assume that the correlation between sources becomes weak 
when the delay is long. Simulation results show that our 
proposed method outperforms other corresponding approaches 
under a lengthy delay, and is more robust against noise, 
particularly when the SNR is low. However, the computational 
complexity caused by a high-order Taylor expansion should  
be considered. Future work includes a reduction of the 
computational complexity of a high-order expansion and the 
extension of our method to a convolution mixture model. 
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