• Title/Summary/Keyword: Blending Film

Search Result 87, Processing Time 0.021 seconds

Characterizations of Cellulose Blend Films: Morphology, Mechanical Property, and Gas Permeability (셀룰로오스 블렌드 필름의 특성연구 : 모폴로지, 기계적 성질, 및 가스 투과도)

  • Jang, Seo-Won;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.63-69
    • /
    • 2008
  • The mechanical properties and morphologies of cellulose blends with two different additives were compared. Poly (vinyl alcohol) (PVA) of ethylene glycol (EG) were used as additives in the formation of cellulose blends through the solution blending. The properties of blends were varied with the additive content in the polymer matrix. The ultimate tensile strength and initial modulus of the cellulose blends were highest for a blend PVA content of 30 wt% and for a blend EG content of 10 wt%, respectively. Ternary blended systems of composition of cellulose/PVA (70/30=w/w)/EG were also prepared by the solution blending method with different EG contents. The mechanical properties of these systems were found to be optimal for EG contents of up to 40 wt%. The mechanical properties of the cellulose ternary blend films were superior to those of the cellulose binary blend films. The oxygen permeability transmission rate ($O_2TR$) monotonically decreased with increasing EG content in the ternary blend films. Overall, the mechanical properties of the cellulose blend films were found to be better than those of pure cellulose films.

Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer (CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Park, So-Hyun;Kang, Hak-Su;Senthilkumar, Natarajan;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • We have investigated the effect of strong p-type organic semiconductor $F_4$-TCNQ-doped CuPc hole transport layer on the performance of p-i-n type bulk heterojunction photovoltaic device with ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5 wt%)/CuPc:C60(blending ratio l:l)/C60/BCP/LiF/Al, architecture fabricated via vacuum deposition process, and have evaluated the J-V characteristics, short-circuit current ($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and power conversion efficiency(${\eta}_e$) of the device. By doping $F_4$-TCNQ into CuPc hole transport layer, increased absorption intensity in absorption spectra, uniform dispersion of organic molecules in the layer, surface uniformity of the layer, and enhanced injection currents improved the current photovoltaic device with power conversion efficiency(${\eta}_e$) of 0.16%, which is still low value compared to silicone solar cell indicating that many efforts should be made to improve organic photovoltaic devices.

Characterization of Biodegradable Conductive Composite Films with Polyaniline(1) (폴리아닐린을 함유한 도전성 복합필름의 제조 및 특성 연구(1))

  • Lee, Soo;Seong, Eun-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.218-224
    • /
    • 2014
  • Biodegradable conductive composite films of polylactic acid(PLA) were prepared with various amounts of polyaniline(PAni) doped with dodecylbenzenesulphonic acid (DBSA) by solution blending technique to identify their mechanical and electric properties. 15 mol% of DBSA doped PAni was easily obtained by polymerizing of aniline in the presence of APS and DBSA in THF at $0^{\circ}C$. FE SEM characterization showed that PAni were well spread on the PLA domains. The tensile strength of composite film with 15 wt% of PAni was significantly decreased from $565.3kg_f/cm^2$ for PLA film itself to $309.7kg_f/cm^2$. Elongations of all PAni/PLA composite films were also decreased up to 3-6%. Electrical conductivity of $2.9{\times}10^{-3}$ S/cm could be achieved for the composite film containing 15 wt% of PAni-DBSA. Thermal stability of these composite films measured by thermogravimetric analysis(TGA) showed a slight decrease with the amount of PAni in PAni/PLA composite films at temperature lower than $300^{\circ}C$. However, the final weight of char was strongly depended with the amount of PAni in original composite films. Conclusively, PAni/PLA composite films containing more than a 15 wt% of PAni could be used for intercepting electromagnetic and preventing electrostatic applications.

Preparation and Curing Behavior of Polyurethane Coatings by Polyester/Lactone Polyol and HDI-biuret (폴리에스테르/락톤 폴리올과 HDI-Biuret에 의한 폴리우레탄 도료의 제조 및 경화거동)

  • 최용호;김대원;황규현;박홍수;김태옥
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.72-81
    • /
    • 2000
  • Benzoic acid polyester/lactone polyol were synthesized by polycaprolactone 0201 as diol, trimethylolpropane as triol, adipic acid as dibasic acid, and benzoic acid as monobasic acid. Polyisocyanate prepolymer Desmodur N-100 of HDI-biuret type was used in this study. Two-component polyurethane coatings were prepared by blending benzoic acid polyester/polycaprolactone, polyisocyanate, wetting/dispersing agent, white pigment, and flowing agent. Various properties were examined on the film coated with the prepared polyurethane. They showed excellent physical properties such as abrasion resistance, accelerated weathering resistance, and yellowness index. They also showed good physical properties such as flexibility, impact resistance, 60$^{\circ}$ specular gloss, cross hatch adhesion, hydrocarbon resistance, and lightness index difference. Hardness of coating showed a little poor character. The introduction of polycaprolactone 0201 as diol in the polyurethane coatings improved the hydrocarbon resistance, impact resistance, and flexibility of coatings. According to the drying and curing behavior with the contents of benzoic acid, they seem to have reasonable coating properties such as drying time of 2 to 4 hours and pot-life time of 20 to 37 hours.

  • PDF

Preparation and Water Vapor Barrier Properties of PET/Nanohybrid PI Films (폴리에스테르/폴리이미드 나노복합필름의 제조 및 수분차단 특성)

  • Han, Seung San;Kim, Yong Seok;Won, Jong Chan;Lee, Jae Heung;Choi, Kil-Yeong
    • Journal of Adhesion and Interface
    • /
    • v.5 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • We have prepared polyster/nanQhybridized polyimide films in the range of 1~9 wt% of organophilic synthetic layered silicate (STN). Firstly, poly(amic acid)/STN nanocomposite solutions were prepared via solution blending method in DMAc or THF/MeOH solution, and then cast on the polyester film followed by imidization reaction, thermal and chemical method repestively. XRD and TEM experiment showed that the STN was fully exfoliated through the polyimide matrix. Surface morphologies of nanohybridized polyimide films were characterized by AFM and thermal, mechanical properties were also confirmed by TGA, DMA and UTM each. And also, the water vapor permeabilities highly depended on the content of STN. The sample from chemical imidization route and THF/MeOH solvent system showed better water vapor barrier properties than thermal one and DMAc system.

  • PDF

Characterization of a New Poly(acrylonitrile-itaconate) based Gel-electrolyte (새로운 poly(acrylonitrile-itaconate)공중합체를 기초로 한 젤-전해질의 특성)

  • Choi B. K.;Kim S. H.;Gong M. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.169-172
    • /
    • 2000
  • A new gel polymer electrolyte based on the modified polyacrylonitrile (PAN), polyacrylonitrile-co-bis[2-(2-methoxyethoxy)ethyl]itaconate (abbreviated as PANI) copolymer was synthesized in expectation of enhanced trapping ability of liquid electrolytes. PAN and PANI blend was complexed with organic solvents, ethylene carbonate (EC) and dimethyl carbonate (DMC), and $LiClO_4$ salt. The highest room temperature conductivity of $2\times10^{-3}\;Scm^{-1}$ was found for a film of 25PAN+10PANl+50EC/DMC+$15LiClO_4$. The solvent-rich crystalline part decreases due to the blending of PANI and therefore number of charge carriers increases giving higher ionic conductivity. The addition of PAM as a host polymer in the PAN-based gels has beneficial effects such as higher ionic conductivity, better thermal characteristics, better miscibility with solvent, wider electrochemical stability, and better interfacial stability with lithium electrode, though it exhibits slightly less mechanical rigidity.

Infrared Spectroscopy and Differential Scanning Calorimetry of Silk Fibroin/Hyaluronic Acid Blend Film (견피브로인/히아론산 브렌드 필름의 적외선 분광 분석 및 시차열분석)

  • Kweon HaeYong;Lee Kwang-Gill;Yeo Joo-Hong;Woo SoonOk;Han SangMi;Lee Yong Woo;Lee Jang Hern;Park Young Hwan
    • Journal of Sericultural and Entomological Science
    • /
    • v.46 no.1
    • /
    • pp.28-31
    • /
    • 2004
  • Bombyx mori silk fibroin/hyaluronic acid blend films were prepared by mixing aqueous solution of B. mori silk fibroin and hyaluronic acid. According to the FTIR spectra, no interaction between silk fibroin and hyaluronic acid was found. The conformation of silk fibroin in blend films was changed from random coil to $\beta$-sheet structure by treatment of EDC ethanol solution. Thermal degradation peak of silk fibroin and hyaluronic acid was also not altered by blending each other. The average swelling ratio of silk fibroin/hyaluronic acid blend films was 70. Therefore, silk fibroin/hyaluronic acid blend films might be one of possible wound dressing materials.

Heat Resistant Electromagnetic Noise Absorber Films Using Poly(amide imide)/Soft Magnet Composite (내열성 전자기 노이즈 흡수 폴리(아미드-이미드)/연자성체 복합체 필름)

  • Han, Ji-Eun;Jeon, Byung-Kuk;Goo, Bon-Jae;Cho, Seung-Hyun;Kim, Sung-Hoon;Lee, Kyung-Sub;Park, Yun-Heum;Lee, Jun-Young
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • We fabricated the electromagnetic (EM) noise absorber films for high temperature use by blending a soft magnetic powder with poly(amide imide) (PAI). The EM noise absorber films of PAI/soft magnet composite were prepared by casting the solution of poly(amide amic acid)/soft magnet powder into glass substrate with casting applicator device and then thermal imidization. The obtained films were fully characterized and their physical properties including thermal behavior, thermal stability and mechanical properties were studied. The EM noise absorption ability was also investigated using micro-strip line method. At 1 GHz, the power loss of composite film with 150 ${\mu}m$ thickness was about 25%.

Ternary Phased Graphene/Silica/EVOH Nanocomposites Coating Films (삼성분계 그래핀/실리카/EVOH 나노 복합 코팅 필름)

  • Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.94-99
    • /
    • 2022
  • Ternary phased graphene/silica/EVOH nanocomposite coating materials were prepared via sol-gel process and solution blending process. From both SEM observations and XRD analysis, the exfoliated structure and dispersion state of graphene nanosheets and silica particles in the nanocomposites as well as the intercalated and exfoliated structure of the prepared graphene oxide were confirmed. The incorporation of GrO and silica at appropriate content resulted in remarkable improvement in oxygen barrier property of the ternary phased nanocompoiste-coated BOPP films, compared with that of binary(silica/EVOH) phased nanocomposite coating films, however, at excess amount of GrO and silica, very slight variation was observed due to incomplete exfoliation, dispersion of graphene tactoids, and formation of micro cracks in the silica clusters. In addition, the transparency of nanocomposite-coated film was investigated by measuring the light transmittance as a function of GrO contents, suggesting the possibility for the application of food packaging films.

Effects of Blended TIPS-pentacene:ph-BTBT-10 Organic Semiconductors on the Photoresponse Characteristics of Organic Field-effect Transistors (TIPS-pentacene:ph-BTBT-10 혼합 유기반도체가 유기전계효과트랜지스터 광반응 특성에 미치는 영향)

  • Chae Min Park;Eun Kwang Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.13-22
    • /
    • 2024
  • In this study, blended 6,13-Bis(triisopropylsilylethynyl)pentacene (TP):2-Decyl-7-phenyl[1]benzothieno[3,2-b][1] benzothiophene (BT):Poly styrene (PS) TFT at different ratios were explored for their potential application as light absorption sensors. Due to the mixing of BT, both off current reduction and on/off ratio improvement were achieved at the same time. In particular, the TP:BT:PS (1:0.25:1 w/w) sample showed excellent light absorption characteristics, which proved that it is possible to manufacture a high-performance light absorption device. Through analysis of the crystal structure and electrical properties of the various mixing ratios, it was confirmed that the TP:BT:PS (1:0.25:1 w/w) sample was optimal. The results of this study outline the expected effects of this innovation not only for the development of light absorption devices but also for the development of mixed organic semiconductor (OSC) optoelectronic systems. Through this study, the potential to create a multipurpose platform that overcomes the limitations of using a single OSC and the potential to fabricate a high-performance OSC TFT with a fine-tuned optical response were confirmed.