• 제목/요약/키워드: Blended Sand

검색결과 35건 처리시간 0.043초

혼합 잔골재의 입자 크기에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축 특성 (The Strength and Drying Shrinkage Properties of Alkali-Activated Slag Mortars as the Particle Size of Blended Fine Aggregate)

  • 김태완
    • 콘크리트학회논문집
    • /
    • 제27권3호
    • /
    • pp.273-281
    • /
    • 2015
  • 본 연구는 세 종류의 서로 다른 규사와 강모래의 조합이 알칼리-활성화 슬래그(AASC) 시멘트의 압축강도와 건조수축 특성에 주는 영향에 대한 것이다. 모래의 특성은 알칼리 활성화 시멘트의 특성에 중요한 영향을 미친다. 세 종류의 규사 (S1, S2 그리고 S3)와 강모래 (RS)를 사용하였다. 또한 세 종류의 혼합 모래에대해 실험을 수행하였다. 첫 번째 시리즈 (S1)는 강모래(RS)와 규사1 (SS1)을, 두 번째 시리즈 (S2)는 강모래(RS)와 규사2 (SS2)를, 세 번째 시리즈(S3)는 강모래 (RS)와 규사3 (SS3)을 서로 다른 비율로 혼합하였다. 그 결과 혼합 모래는 AASC 모르타르의 특성에 특이할만한 영향을 주는 것으로 나타났다. 모래의 입자크기와 혼합율의 관계에 따른 압축강도와 건조수축은 혼합된 모래의 조립률(FM)과 상대 표면적이 충분히 고려되어야 한다. 모래의 종류와 혼합비율은 AASC 모르타르의 배합 설계에 중요하게 고려되어야 할 요소이다.

잔골재의 혼합비율 변화에 따른 수중불분리성 콘크리트의 특성에 관한 연구 (Study on the Properties of Antiwashout Underwater Concrete with Variation of Mixing Proportion of Fine Aggregate Types)

  • 배원만;박세윤;백동일;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.533-536
    • /
    • 2003
  • The objective of in this study makes investigation into the characteristics of antiwashout underwater concrete as to mix proportion, casting and curing water through experimental researches. in this study, sea sand is blended with river sand, crushed sand is blended with river sand and sea sand as to investigate the quality change and characteristics of antiwashout underwater concrete with variation of blend ratio of sea sand and crushed sand(0, 20, 40, 60, 80, 100%). Higher compressive strength is measured following the order of river sand, sea sand, crushed sand regardless of age and casting condition. Except for case of using river sand, blended ratio of 40% is appeared on most compressive strength.

  • PDF

수중불분리성 콘크리트의 장기강도 특성에 관한 연구 (Study on the Long age Strength Properties of Antiwashout Underwater Concrete)

  • 박세인;이동화;김종수;김명수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.113-117
    • /
    • 2000
  • The objective of this study is to find the long-age strength property and the compressive strength of age which is used as the specified concrete strength. The W/W ratio (45%, 50%, 55%, 60%) fine aggregate of useful river sand or blended sand(river sane : sea sand=1:1) were chosen as the experimental parameters. the experimental results show that pH(it means the material segregation resistance) & suspension were increased larger, so W/C become larger, and slump flow was increased as W/C increased (except W/C=60%), air-contents were decreased as W/C became increase and all of this results are satisfied with the under of 40%. The compressive strength ( a case use only river sand as fine aggregate) is showed less than the case of blended asnd. Because the unit weight of the blended sand is more heavy than the unit weigh of the river sand. The results of the case which haven been used only river sand, and the case have been used blended sand), both case have considered W/C. So it's possible to use the compressive strength of age 28 day like the case of plain concrete.

  • PDF

혼합모래를 사용한 시멘트 모르터의 특성에 관한 연구 (A Study on the Properties of Cement Mortar Using Blended Sand)

  • 박용규;김민호;윤기원;류현기;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.65-68
    • /
    • 2005
  • This paper investigated the engineering properties of cement mortar mixed with more than 2 kinds of sand. For fresh mortar properties, unit volume weight is constant regardless of mixing content and type of sand. An increase in contents of river and crushed sand resulted in an increase in flow, whereas an increase in recycled sand contents reduced flow. Gap between maximum flow in N3C0R0 and minimum flow in N0C0R3 exhibited about $12\%$. Compressive strength at 28 days ranged from 32 to 36 MPa in order for crushed sand, river sand and recycled sand. Mortar with mixed sand along with river sand and crushed sand showed compressive strength comparable to crushed sand. An increase of fraction of recycled sand in mixed sand resulted in a decrease in compressive strength. For drying shrinkage, N0C0R3 had the largest drying shrinkage among various mixture type. The combination of large contents of recycled sand and small contents of river and crushed sand had a large amount of drying shrinkage.

  • PDF

Sustainable use of OPC-CSA blend for artificial cementation of sand: A dosage optimization study

  • Subramanian, Sathya;Tee, Wei Zhong;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.409-422
    • /
    • 2022
  • The use of calcium sulfoaluminate (CSA) cement as a rapid-hardening cement admixture or eco-friendly alternate for ordinary Portland cement (OPC) has been attempted over the years, but the cost of CSA cement and availability of suitable aluminium resource prevent its wide practical application. To propose an effective ground improvement design in sandy soil, this study aims at blending a certain percentage of CSA with OPC to find an optimum blend that would have fast-setting behavior with a lower carbon footprint than OPC without compromising the mechanical properties of the cemented sand. Compared to the 100% CSA case, initial speed of strength development of blended cement is relatively low as it is mixed with OPC. It is found that 80% OPC and 20% CSA blend has low initial strength but eventually produces equivalent ultimate strength (28 days curing) to that of CSA treated sand. The specific OPC-CSA blend (80:20) exhibits significantly higher strength gain than using pure OPC, thus allowing effective geotechnical designs for sustainable and controlled ground improvement. Further parametric studies were conducted for the blended cement under various curing conditions, cement contents, and curing times. Wet-cured cement treated sand had 33% lower strength than that of dry-cured samples, while the stiffness of wet-cured samples was 25% lower than that of dry-cured samples.

Strength and chloride penetration of Portland cement mortar containing palm oil fuel ash and ground river sand

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • 제6권5호
    • /
    • pp.391-401
    • /
    • 2009
  • This paper presents a study of the strength and chloride penetration of blended Portland cement mortar containing ground palm oil fuel ash (POA) and ground river sand (GS). Ordinary Portland cement (OPC) was partially replaced with POA and GS. Compressive strength, rapid chloride penetration test (RCPT) and chloride penetration depth of mortars were determined. The GS only asserted the packing effect and its incorporation reduced the strength and the resistance to chloride penetration of mortar. The POA asserted both packing and pozzolanic effects. The use of the blend of equal portion of POA and GS also produced high strength mortars, save cost and excellent resistance to chloride penetration owing to the synergic effect of the blend of POA and GS. For chloride depth, the mathematical model correlates well with the experimental results. The computer graphics of chloride depth of the ternary blended mortars are also constructed and can be used to aid the understanding and the proportioning of the blended system.

부산근교에서 생산된 부순골재의 특성에 관한 기초적 연구 (A Fundamental Study on the Properties of Crushed Aggregates Produced in Busan Suburbs)

  • 배원만;염치선;이환우;장희석;김종수;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.376-379
    • /
    • 2004
  • The objective of in this study makes investigation into the characteristics of concrete as to properties and blended ratio of crushed aggregates through experimental researches. In this study, river sand is blended with crushed sand as to investigate the quality change and characteristics of concrete with variation of blend ratio of crushed sand(50, 60, 70, 80, 90, $100\%$). Measured the air contents and slump to investigate properties of fresh concrete, and unit weight and compressive strength in age of 7, 28days to investigate properties of hardened concrete. The experimental results of crushed aggregates' qualities were all satisfied with Korea Standard's values.

  • PDF

혼합모래를 사용한 콘크리트의 강도 특성 (Compressive Strength Characteristics of Concrete Using in Crushed Sand)

  • 백동일;염치선;김명식;김종수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.731-734
    • /
    • 2005
  • Crushed sand is blended in order to investigate the quality changes and characteristics of concrete with variation of blend ratio of crushed sand (50, 60, 70, 80, 90, $100\%$). Slump and air content were measured to investigate properties of fresh concrete, and unit weight, compressive strength and modulus of elasticity in age of 7, 28, 60, 90, 180 days were measured to investigate properties of hardened concrete. Compressive strength, unit weight and modulus of elasticity were increased as time goes by and they are expected to keep on increasing in long-term age as well. As a result of measuring compressive strength and modulus of elasticity in age of 7, 28, 60, 90, 180days, compressive strength was highest when it is $70\%$ of blended ratio.

  • PDF

부순모래 혼입률 변화에 따른 수중불분리성 콘크리트의 특성 연구 (Study on the Properties of Antiwashout Underwater Concrete with Variation of Blend Ratio of Crushed Sand)

  • 박세인;오광영;이환우;김종수;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.427-432
    • /
    • 2001
  • In this study, crushed sand is blended with river sand and sea sand, to investigate the quality change of antiwashout underwater concrete with variation of blend ratio of crushed sand(0%, 20%, 40%, 60%, 80%, 100%). To see experiment conclusion, the more blend ratio of crushed sand increases, the more unit weight increases. Because the for that specific gravity of crushed sand is higher comparatively than that of river sand and sea sand. Higher compressive strength is measured following the order of river sand, crushed sand, sea sand regardless of age and casting-curing condition. Except for case of using river sand, blend ratio of 40% is appeared on most compressive strength. So the optimum blend ratio of crushed sand is 40% from the view point of compressive strength.

  • PDF

W/C 변화에 따른 수중불분리 콘크리트의 기초특성에 관한 실험적 연구 (An Experimental Study on the Fundamental Characteristics of Antiwashout Underwater Concrete with Variation of Water-cement Ratio)

  • 김명식;어영선;윤재범;이상명
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.21-29
    • /
    • 1999
  • In this study, an experiment was performed to analyze the influence of water-cement ratio on the fundamental characteristics of antiwashout underwater concrete using blended sand (sea sand:river sand = 1:1). The water-cement ratio (45%, 50%, 55%, 60%), andtiwashout underwater agent contents (0.82%, 1.00%, 1.14% of water contents per unit volume of concrete), and superplasticizer contents (1.5%, 2.0%, 2.5% of cement contents per unit volume of concrete) were chosen as the experimental parameters. The experimental results show that the underwater segregation resistance, unit weight of hardening concrete and compressive strength were increased as the water-cement ratio decreased and as the antiwashout underwater agent contents increased. On the other hand, the flowability(slump flow) was increased to the 55% of the increase of water-cement ratio, however, it was decreased at the ratio of 60%. From this study, the antiwashout underwater concrete can potentially be used as a materials underwater work of ocean if the water-cement ratio and chemical admixture contents for the suitable balance between cost and performance are properly selected.