• Title/Summary/Keyword: Blended Diesel

Search Result 141, Processing Time 0.021 seconds

Performance and Emission Characteristics of a Compression Ignition Engine Operated with LPG and Cetane Enhancing Additives (LPG/DTBP 혼합연료를 사용하는 압축착화 엔진의 부분부하 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2010
  • In this study, a feasibility test of liquid petroleum gas (LPG) compression ignition (CI) engine has been carried out to study the effectiveness of cetane enhancing additive: Di-tertiary-butyl peroxide (DTBP). Performance and emissions characteristics of a CI engine fuelled with DTBP blended LPG fuel were examined. Also, the effect of EGR (exhaust gas recirculation) on the combustion and emissions characteristics has been investigated. Results showed that stable engine operation over a wide range of the engine loads was possible. Exhaust emissions measurements showed that hydrocarbon were decreased with the blended fuel at enhancing cetane number. Furthermore, the combustion stability of LPG with a cetane number improver was equivalent to that of commercial Diesel fuel. Increasing the EGR rate leads to deteriorate the IMEP (indicated mean effective pressure) and increase the ignition delay. It was found that the exhaust emissions with the EGR resulted in a very large reduction in nitrogen oxides at the expense of higher THC and CO emissions. Considering the results of engine performance and exhaust emissions, LPG blended fuel of enhancing cetane number could be used as an alternative fuel for diesel in a CI engine.

Feasibility Study of Using Wood Pyrolysis Oil in a Dual-injection Diesel Engine (이중분사기가 장착된 디젤 엔진에서 목질계 열분해유의 적용 가능성에 관한 연구)

  • Lee, Seokhwan;Jang, Youngun;Kim, Hoseung;Kim, Taeyoung;Kang, Kernyong;Lim, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of petroleum fuels. Fast pyrolysis of biomass is one of several paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO) has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, high acidity, high viscosity, and low cetane number of the WPO. One possible method by which the shortcomings may be circumvented is to co-fire WPO with other petroleum fuels. WPO has poor miscibility with light petroleum fuel oils; the most suitable candidates fuels for direct fuel mixing are methanol or ethanol. Early mixing with methanol or ethanol has the added benefit of significantly improving the storage and handling properties of the WPO. For separate injection co-firing, a WPO-ethanol blended fuel can be fired through diesel pilot injection in a dual-injection dieel engine. In this study, the performance and emission characteristics of a dual-injection diesel engine fuelled with diesel (pilot injection) and WPO-ethanol blend (main injection) were experimentally investigated. Results showed that although stable engine operation was possible with separate injection co-firing, the fuel conversion efficiency was slightly decreased due to high water contents of WPO compare to diesel combustion.

A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System (자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구)

  • Lee, Jin-Wook;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

Spray Characteristics of Biodiesel Fuel by Blending Bioethanol and Diesel Fuel in a Common Rail Injection System (커먼레일 분사시스템에서 바이오에탄올 및 디젤연료 혼합 바이오디젤의 분무 특성)

  • Park, Su-Han;Suh, Hyun-Kyu;Kim, Hyung-Jun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • In order to investigate the spray characteristics according to diesel and bioethanol blending with biodiesel fuel, macroscopic spray characteristics were analyzed from the comparison of the effect of the injection pressure, ambient pressure and density on the spray tip penetration and spray cone angle. In addition, spray atomization characteristics were studied with local and overall Sauter mean diameter (SMD) and the contour map of SMD distribution at various injection conditions. It was revealed that the spray tip penetration of biodiesel fuels blended with diesel and ethanol was shorter than that of an undiluted biodiesel fuel at low injection pressure. However, the difference of spray tip penetration among three test fuels reduces at a high injection pressure. Increase of the ambient gas density leads to the decrease of the spray tip penetration of three test fuels. When diesel and ethanol fuels add to an undiluted biodiesel fuel, spray cone angle increases due to the decrease of the fuel density at the same ambient pressure condition. On the other hand, the droplet mean diameter decreases due to the reduction of the kinematic viscosity and surface tension.

A Study on Alternative Fuel as Fuel Substitutes in DI Diesel Engine III (Esterified fuel, Analysis of rate of combustion using by Wiebe's functions) (디젤기관의 대체연료 이용에 관한 연구(III) (에스테르 연료, 연소특성해석))

  • 오영택;정규조;촌산정
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.31-43
    • /
    • 1989
  • The paper shows a solution by giving vegetable oil a chemical treatment, i.e., transesterification of the rapeseed oil without any modification of the diesel engine for reducing carbon deposits, and to evaluate rate of combustion with vegetable oils, their esterified fuel and their blend fuels using a double Wiebe's function approximation in a naturally aspired D.I. diesel engine. Since any oil will be as material for ester, if it is fatty acid, the sardine oil was considered. In the experiment, engine performance, exhaust gas emissions, and combustion characteristics were measured and calculated for a number of fuels: rapeseed oil, palm oil, ester of rapeseed oil, and these fuels blended with ethanol or diesel fuel.

  • PDF

Study on Combustion Characteristics of Diesel Fuel and Low Quality Oil Droplet with Additive Oxygenate and Paraffin (함산소계 및 파라핀계 혼합 경유 및 저질유 액적의 연소특성에 관한 연구)

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.552-561
    • /
    • 2006
  • The single droplet combustion characteristics of diesel fuel and low quality oil with additive oxygenate and paraffin under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may are concluded as follows: In the combustion of diesel fuel and low quality oil droplet with additive of oxygenate and paraffin. the dimensionless droplet size of $(D/Do)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature base fuel evaporates and burns faster than usual base fuel. Especially. these trends were remarkably obtained by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than n-paraffin agents. This rapid burning may result from so-called 'micro-explosion' and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels.

A Study on the Fuel Characteristics of Hydrotreated Biodiesel(HBD) for Alternative Diesel Fuel (경유 대체연료로서 수첨 바이오디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.508-516
    • /
    • 2011
  • Hydrotreated biodiesel(HBD) is paraffinic bio-based liquid, with the chemical structure $C_nH_{2n+2}$, originating from vegetable oil(the process can also be applied to animal fat). The oil or fat is treated in a number of process, the most important being hydrogenation, in order to create a bio-based liquid diesel fuel. During the hydrogenation, oxygen is removed from the triglyceride and converted into water. Propane is formed as a by product and can be combusted and used for energy production. HBD can be used in conventional diesel engines, pure or blended with conventional diesel, due to its similar physical properties to diesel. This study reports the quality characteristics with chemical and physical properties as an alternative diesel fuel. Especially, HBD showed higher cetane value and number than FAME, and it is consisted of $C_{15}$ - $C_{18}$ n-paraffinic compounds. We also describes quality characteristics of HBD blends(2, 5, 10, 20, 30, 40, 50 vol%) in automotive diesel. HBD blends(max. 20 vol%) were the limit by the Korean specification due to poor low temperature characteristics.

Experimental Study on the Emission Characteristics of Diesel, GTL, and their Blends with Biodiesel in a Diesel Engine (디젤엔진에서 디젤, GTL, 바이오디젤의 혼합유의 배기배출물 특성에 관한 실험적 연구)

  • Lee, Yong-Gyu;Moon, Gun-Feel;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.140-146
    • /
    • 2010
  • An experimental study was carried out to investigate the emission characteristics for various alternative fuels in a 2.0 liter 4-cylinder turbo-charged diesel engine. The conventional diesel fuel, neat GTL (Gas to Liquid), blends of diesel and biodiesel(BD20), and blends of GTL and biodiesel(G+BD20 and G+BD40) were applied, and their emission characteristics were compared at various steady-state engine operating conditions. A noticeable reduction of exhaust emissions compared to conventional diesel fuel, except for NOx emission, was observed for G+BD40, where there is a maximum 30% averaged reduction for gaseous emissions (THC and CO) and 70% for PM mass concentrations. When comparing PM size distributions for biodiesel blended fuels, the PM number concentration in accumulation mode, where the diameter of PM is greater than 50 nm, decreased due to additional oxygen content in the biodiesel fuel; in nucleation mode, where the diameter of PM is less than 50nm, there was a slight increase or decrease in the PM number concentration depending on the amount of oxygen available in the combustion chamber.

A Study on the Combustion Stability and Characteristics for D.O - Methanol Blending Oil in Diesel Engine (디젤기관에서의 경유-메탄올 혼합유의 연소 안전성과 연소특성에 관한 연구)

  • Kim, Sang-Am;Wang, Woo-Gyeong
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2018
  • It has recently been reported that methanol fuel has been used in the product carrier with established duel fuel engine, which has been greatly reducing emissions of $CO_2$, NOx and SOx from the engine. However, to use methanol alone as fuel oil in a general diesel engine, design modification of cylinder head is needed because the ignition aid device or the duel fuel injection system is needed. On the other hand, only if the mixer is installed on the fuel oil supply line, diesel oil - methanol blending oil can be used as fuel oil for the diesel engine, but there is a problem of the phase separation when two fuels are mixed. In this study, diesel oil and methanol were blended compulsorily in preventing the phase separation with installing agitators and a fuel oil boost pump on fuel line of a test engine. Also, cylinder pressure and fuel consumption quantity were measured according to engine load and methanol blending ratio, and indicated mean effective pressure, heat release rate and combustion temperature obtained from the single zone combustion model were analyzed to investigate the effects of latent heat of vaporization of methanol on combustion stability and characteristics. As a result, the combustion stability and characteristics of 10% methanol blending oil are closest to the those of diesel oil, and it could be used as fuel oil in existing diesel engines without deterioration of engine performance and combustion characteristics.

Wear, Oxidation and Shear Characteristics of Mixed Lubricating Oil (Mineral/Vegetable oil) with ZnDTP (ZnDTP를 첨가한 혼합윤활유(광유/식물성 오일)의 마모, 산화 및 전단 특성)

  • Lim, TaeYoon;Kim, YangHoe;Na, Byung-Ki
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.160-167
    • /
    • 2018
  • Vegetable oils can contribute to the goal of energy independence and security owing to their naturally renewable resources. One of the representative vegetable oils is biodiesel, which is being used in domestic and European markets as a blended fuel with automotive diesel. Vegetable oils are promising candidates as base fluids to replace petroleum lubricants because of their excellent lubricity and biodegradability. We prepared biodiesel with a purity of 99.9% via the esterification of waste cooking oil. Blended biodiesel and Petro-lube base oil were mixed to produce five types of mixed lubricating oil. We analyzed the various characteristics of the blended biodiesel with Petro-lube base oil for different blending ratios. The lubricity of the vegetable lubricant improves as the content of biodiesel increases. In addition, since zinc dialkyldithiophosphates (ZnDTPs) are widely used as multifunctional additives in petroleum-based lubricants, we optimized the blending ratio for lubricity, oxidation stability, and shear stability by adding ZnDTP as a performance additive to improve the biodiesel properties, such as oxidation stability and hydrolysis. The optimized lubricants improve by approximately 25% in lubricity and by 20 times in oxidation stability and shear stability after the addition of ZnDTP.