• Title/Summary/Keyword: Blasting operation time

Search Result 16, Processing Time 0.02 seconds

A Comparison of Operation Time between the Standard of Estimate and Actual Operations in Tunnel Blasting (터널발파시 실제 작업시간과 품셈의 비교 분석)

  • Kim, Yang-Kyun;Kim, Hyung-Mok
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.14-20
    • /
    • 2015
  • Tunnel blasting that plays the most important role in the construction of a drill & blast tunnel, shows a big difference in operation time according to various factors such as rock mass quality, tunnel dimension, machine performance, and the skill level of tunnel crews. This paper analyzes the differences between the time calculated by the standard of estimate and actual operation time based upon field investigations on blasting operation time in three tunnels of Korea. The result shows that actual blasting time is generally about 8%~16% less than the standard of estimate in cases that normal operations are performed. If the time delayed by unforeseen situations is included, however, it is presumed that the number of cases that actual operation time exceeds the standard of estimate are considerable. This study aims to help make a judgement over the appropriacy of the standard of estimate through continuous investigations on actual operation time, as well as improve the productivity of tunnel excavation.

A Study on Delay Time Control for Lowering Grounding Vibration and Noise Induced by Blasting (발파에 의한 지반진동 및 소음 저감을 위한 지연시차 조절에 관한 연구)

  • Lee, Bong-Hyun;Choi, Sung-Oong
    • Explosives and Blasting
    • /
    • v.32 no.3
    • /
    • pp.18-25
    • /
    • 2014
  • Ground vibration and noise from blasting operation are known to be the most representative constituents which can cause human and material damage. In this study, the effect of delay time on ground vibration is investigated by adopting seven different delay times in bench blasting. For each delay time, three blasting operations were performed. The prediction equations for blasting vibration are derived from 50 sets of measurement and the time theory of Langefors is evoked in the analysis of the blasting vibrations and frequencies. For the delay times of 8 ms and 28 ms, the average values of ground vibration are 5.76 cm/sec and 5.75 cm/sec, respectively, which are considerably low. Also the cyclic variation in the vibration measurements with the delay time confirms the interference effect. From the application of the measurements of blasting vibration and frequency to the time theory of Langefors, it is concluded that the optimum delay times are 8 ms and 24 ms for the test site.

On the Selected Blasting Method and Measurement of Vibration and Sound Level by Blasting in KU-SAN area. (구산동 아파트 재개발 사업의 발파공법 선정 및 주변 가옥에 미치는 발파 진동.소음 영향에 관한 연구)

  • 강대우
    • Explosives and Blasting
    • /
    • v.16 no.3
    • /
    • pp.16-24
    • /
    • 1998
  • Methods of Rock fragmentation are used rock of housing repair development at KU-SAN DONG area in seoul Youn-Pyong Ku. So, Theorical analyses of the effect of vibration and frequency on structural damage around old housed also discussed. The results can be summarized as follows: 1. A area(Rock area not more than 15m Ku-San Mention) Some Empirical equations were obtained $V=K\{{\frac{D}{W}}1/3\}^{-n}$ where the values for n and K are estimated to be -1.64 and 94 respectively, this values were obtained only theorical analyses. If we have 125g charge this area is impossible blasting operation, so this area must be worked by SRS(Super Rock Splitter) method. 2. B area(Rock area from 15m to 25m in a boundary line from Ku-San Mention) This area charge is about 125g in a delay time by some empirical equation s. So, this area can be blasting operations by small charge. 3. C area(Rock area from 25m to 35m in a boundary line from Ku-San Mention) This area charge is about 500g in delay time by some empirical equation s. So, this area can be blasting operations by middle charge. 4. D area(Rock area more then 35m in a boundary line from Ku-San Mention) This area charge is about 1000g in a delay time by some empirical equation s. So, this area can be blasting operations by middle charge.

  • PDF

Blasting Utilizing Non-electric Detonator and Its Principle Planning and Operation (비전기 뇌관의 발파와 기본 설계 및 시공)

  • Choi Young-Cheon
    • Explosives and Blasting
    • /
    • v.22 no.4
    • /
    • pp.23-29
    • /
    • 2004
  • Non-electric detonator was developed to improve the blasting efficiency of electric detonator. It is increasingly utilized in surface and tunnel blasting due to its safety in external electric shock, precise delayed time, and decrease in blasting vibration and noise. The paper describes the detonating system of non-electric detonator, principle operating and planning methods, and case history so that it can be contributed to improve blasting technology.

Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Qin, Yang;Li, Peng;Li, Yujie
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.399-413
    • /
    • 2018
  • This paper addresses the issue of field measurement of excavation damage zone (EDZ) and its numerical simulation method considering both excavation unloading and blasting load effects. Firstly, a 2000 m-deep rock cavern in China is focused. A detailed analysis is conducted on the field measurement data regarding the mechanical response of rock masses subjected to excavation and blasting operation. The extent of EDZ is revealed 3.6 m-4.0 m, accounting for 28.6% of the cavern span, so it is significantly larger than rock caverns at conventional overburden depth. The rock mass mechanical response subjected to excavation and blasting is time-independent. Afterwards, based on findings of the field measurement data, a numerical evaluation method for EDZ determination considering both excavation unloading and blasting load effects is presented. The basic idea and general procedures are illustrated. It features a calibration operation of damage constant, which is defined in an elasto-plastic damage constitutive model, and a regression process of blasting load using field blasting vibration monitoring data. The numerical simulation results are basically consistent with the field measurement results. Further, some issues regarding the blasting loads, applicability of proposed numerical method, and some other factors are discussed. In conclusion, the field measurement data collected from the 2000 m-deep rock cavern and the corresponding findings will broaden the understanding of tunnel behavior subjected to excavation and blasting at great depth. Meanwhile, the presented numerical simulation method for EDZ determination considering both excavation unloading and blasting load effects can be used to evaluate rock caverns with similar characteristics.

Advancement of Blast Effect by Inducing Drill Jumbo on Automatic Drilling System (점보드릴 자동천공 시스템 도입에 의한 발파효과 향상)

  • Kim, Seung-Jun;Kim, Jeong-Gyu;Ko, Young-Hun;Ahn, Je-Min;Kim, Nam-su;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Drilling operation for blasting is an important factor to determine blast effect. Drilling errors that arise from performing drilling for blasting purposes can reduce blasting effect causing residual holes, overbreak, and heterogeneous fragmentation, etc. Automatic drilling system was induced for precise drilling. As a result, drilling error caused by spaces between holes and burden was minor at 0~2.6% and accordingly, blasting effect was improved with over 90% drilling rate, the ratio of overbreak amount to total drilling amount at 4.3%, proportion of fragmentation rock under 50cm at 89~95% and so from this analyses, it was estimated to reduce the total cycle times related to blasting process.

Study on Improvement of Safety Standards for Blasting Operation (발파 관련 산업안전보건규칙 개선을 위한 연구)

  • Hoyoung, Jeong;Yeon-Ho Jin;Sik Kim;Yong Cheol Bae;Sangho Cho;Sungyun Kang;Kwangyeom Kim
    • Explosives and Blasting
    • /
    • v.42 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • The purpose of this study is to suggest amendments for the effective operation of safety and health regulations that stipulate safety standards for the prevention of industrial accidents in blasting and tunneling works. Because the regulations on Occupational Safety and Health Standards have not been revised for a long time, the regulations do not meet the requirements in site, and it is reported that it is difficult to implement the regulations at workplaces due to various deficiencies. Therefore, this study aims to abolish or improve unreasonable regulations that do not fit reality due to changes in the technology environment, or to modify low-operability regulations considering domestic conditions in blasting and tunneling workplaces. By comparing domestic laws and standards related to blasting and tunneling works with foreign ones, the improvement measures were suggested.

A Case Study on the Application of HiTRONIC-II Electronic Detonators to Overseas Site (HiTRONIC-II 전자뇌관 해외현장 적용 기술사례)

  • Lee, Dong-Hee;Jeong, Min-Su;Hwang, Nam-sun;Kim, Tae-hyun
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.34-42
    • /
    • 2019
  • An electronic initiation system that can support various types of field blasting works has been developed and put into practice. The newly developed equipment called Hanwha Electronic Blasting System (HEBS) II has three basic operation modes of scanning, logging, and tagging, among which the blaster can choose the most suitable one for the specific site conditions. In the present study, the work efficiency of the system in the scanning, logging and tagging modes was compared with that of the previous non-electric detonator. The results were estimated based on the aspects of the ground vibration, fragmentation, and digging time. It was found that the ground vibration, fragmentation, and digging time of the new system were decreased by about 45%, 31%, and 13%, respectively, with respect to the previous system. This result confirms that the new system is very efficient in the scanning, logging and tagging modes under the field conditions.

Effect of Retaining Preconsruction Primer (PCP) on the Quality of High Performance Protective Coatings Systems

  • Chung, M.K.;Baek, K.K.;Lee, H.I.;Lee, C.H.;Shin, C.S.
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.59-66
    • /
    • 2004
  • In construction of new ships and large steel bridges in Korea, pre-construction primers (PCP), also known as shop primer, are routinely used and retained as an integral part of the protective coating system. Retention of PCP's can significantly reduce building schedule and cost. Retaining PCP through the so-called "sweep blasting" procedure eliminates or minimizes the necessity of a second blast operation, thus shortening overall schedule as well as reducing labor cost and hazardous waste disposal cost. This study evaluates the feasibility of retaining PCP as the part of primer for high performance protective coating systems applied to ships' hull, bottom and ballast tanks. Upon proving that the retention of the PCP is a viable option, the process of coating application can he improved significantly in terms of cost and working schedule of new ships and large steel bridges. Results indicate that use of the PCP via sweeping blasting in conjunction with standard high performance protective coating systems does not degrade the overall performance of the coating systems. At the same time, it is also highly recommended that the secondary surface preparation should consist of grit blasting of weld burnt and other damaged areas to SSPC SP-IO grade (Sa 2.5 Gr.), Near White Blast Cleaning with proper application and attention to detail.

A Survey on the Magnitude of the Sound, Ground Vibration and Properly Delayed Interval of a Plasma Rock-Splitting Machine driven by Electric Shocks (플라즈마 지발 전력충격파암기의 적정 지발시차 및 진동과 소음크기 고찰)

  • Won, Yeon-Ho;Kang, Choo-Won;Kim, Il-Jung
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.7-20
    • /
    • 2009
  • In this study, 5 steps of different delay intervals are applied to a plasma rock-breaking machine that is driven by electric shocks in order to improve the workability of the traditional single-shot type plasma rock-breaking operation. The sequential steps use the electrolyte volume per delay of 1, 2, 3, 4, 5 kg and it has been analyzed to measure the delay time and level of the ground vibration and noise according to exploding. The delay time of the rock-breaking machine by an electric shock of 5 steps has used about 40~50ms at the electrolyte connected from 1 to 3 holes, about 70~80ms at the electrolyte connected from 4 to 5 holes. It is identified that the extents of the ground vibration is low to 1 over 3~6 compared with that of the emulsion explosives.