• Title/Summary/Keyword: Blasting Vibration

Search Result 432, Processing Time 0.026 seconds

A Study on Delay Time Control for Lowering Grounding Vibration and Noise Induced by Blasting (발파에 의한 지반진동 및 소음 저감을 위한 지연시차 조절에 관한 연구)

  • Lee, Bong-Hyun;Choi, Sung-Oong
    • Explosives and Blasting
    • /
    • v.32 no.3
    • /
    • pp.18-25
    • /
    • 2014
  • Ground vibration and noise from blasting operation are known to be the most representative constituents which can cause human and material damage. In this study, the effect of delay time on ground vibration is investigated by adopting seven different delay times in bench blasting. For each delay time, three blasting operations were performed. The prediction equations for blasting vibration are derived from 50 sets of measurement and the time theory of Langefors is evoked in the analysis of the blasting vibrations and frequencies. For the delay times of 8 ms and 28 ms, the average values of ground vibration are 5.76 cm/sec and 5.75 cm/sec, respectively, which are considerably low. Also the cyclic variation in the vibration measurements with the delay time confirms the interference effect. From the application of the measurements of blasting vibration and frequency to the time theory of Langefors, it is concluded that the optimum delay times are 8 ms and 24 ms for the test site.

A Study on the Prediction Method of Blasting Vibration (발파진동 예측방법에 관한 연구)

  • Lee, Yeon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.361-365
    • /
    • 2006
  • In order to predict method of blasting vibration in ground and it's resident located around blasting field in urban area, blasting vibration characteristics were measured the vibration velocity(cm/sec), vibration acceleration($cm/sec^2$), vibration acceleration level(dB) and vibration level(dB(V)). The charged powder were used to 1.25kg and measuring sites were 25 points front 4m to 90m at the ground. The correlation of vibration velocity, vibration acceleration, vibration acceleration level and vibration level by square root scaled distance and cube root scaled distance were investigated. The correlation of PPV(peak particle velocity) velocity by SRSD(square root scaled distance) and CRSD(cube root scaled distance) was 0.85 and 0.86 and the correlation of PVS(peak vector sum) velocity by SRSD and CRSD was 0.82. Also vibration acceleration, vibration acceleration level and vibration level by SRSD and CRSD was 0.61, 0.62 and 0.82, respectively. As results, the vibration velocity and vibration level(dB(V)) was showed good correlation, but the vibration acceleration and vibration acceleration level was not showed good correlation.

  • PDF

A Study on the Ground Vibration Reduction Characteristics of Air-Deck Blasting Method Using Paraffin Waxed Paper Tube (파라핀 지관 구조체를 활용한 Air-Deck 발파공법의 지반진동 저감특성에 관한 연구)

  • Gyeong-Jo, Min;Young-Keun, Kim;Chan-Hwi, Shin;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.32-45
    • /
    • 2023
  • Environmental regulations in Korea for blasting at industrial sites have conservative standards, which often result in reduced efficiency and cost-effectiveness due to the consideration of environmental regulations and public complaints. Therefore, there is a need for blasting methods that can reduce environmental damage while improving construction efficiency and cost-effectiveness. In this study, we analyzed the effects of the PA-Deck (Paraffin Air-Deck) blasting method, which is a kind of Air Decoupled Charge method in principle utilizing a paraffin-infused paper tube as an air gap, on reducing blasting hazards and improving blasting efficiency. The analysis also evaluated the effectiveness of newly applied equipment for collecting blasting vibration data, and derived the relationship between the explosion velocity and vibration velocity of explosives, and performed frequency analysis of the vertical component. The results of the blasting vibration velocity analysis showed that the Paraffin Waxed Paper Tube-based blasting method exhibited significantly lower vibration velocities compared to conventional blasting methods, and it was judged that more uniformly small-sized fragmented rocks were generated.

A Case of Blasting Vibration Reduction in the Tunnel Construction under a Residential Area (주거지역 터널공사에서의 발파진동 저감사례)

  • Kang, Jin-Ook;Lee, Hyun-Koo;Lee, Myong-Choul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.175-180
    • /
    • 2007
  • This paper presents a case study on blasting vibration reduction in NATM(New Australian Tunnelling Method) tunnel construction carried out under a congested residential area. In NATM tunnel constructions, blasting is an essential process, thus vibration phenomenon is inevitable. Therefore, the vibration reduction was tried to avoid expected complaints from the public living in the area. Test blastings were performed to get the constants for an estimation formula of vibration velocity. Then the influence area was approximated using the estimation formula, and construction methods for the vibration reduction were sought based on the results.

  • PDF

Tunnel Blasting case by Combination of Electronic Detonator and Non-electric Detonator (전자뇌관과 비전기뇌관을 조합한 터널발파 시공사례)

  • Lee, Min Su;Kim, Hee Do;Lee, Hyo;Lee, Jun Won
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.34-38
    • /
    • 2018
  • It proceed the trial test by applying blasting system with combination of electronic detonator and non-electric detonator(Supex Blasting Method) for the purpose of preventing the over-break as well as controling the blasting vibration and noisy at the site of Boseong-Imseongri railroad section ${\bigcirc}{\bigcirc}$. As a result of that, the blasting vibration and noisy was measured within the allowable standard of vibration. In conclusion, the combination of electronic detonator and non-electric detonator can not only reduce come construction cost, level of vibration and noisy but also get the prevention effect for Public resentment and minimize the rock-damage through over break control.

ON THE DEVELOPMENT OF EXPLOSION TECHNOLOGY IN SEOUL METRO SUBWAY CONSTRUSTION (서울 지하철 건설의 발파기술 발전)

  • 許眞
    • Explosives and Blasting
    • /
    • v.18 no.1
    • /
    • pp.59-70
    • /
    • 2000
  • The blasting work to construct a subway in seoul, korea have often cased increased neighbor's complaints because of ground vibration. In order to prevent the demage to the stucture it was necessary to predict the level of blasting induced vibration and to determine the maximum charge weigh per delay with an allowable vibration level. The effect of blasting pattem, rock strength and different explosive on the blast-induced ground vibration was studied to determine the maximum charage weight per delay within a given vibration level. The blasting vibration equation from over 100 test data was obtained, V= K(D/W(equation omitted), where the values for n and K are estimated to be 1.7 to 1.5 and 48 to 138 respectively.

  • PDF

The Vibration Velocity and Vibration Level of Near-field Blasting Vibration in an Urban Blasting Site (근접장 발파진동에서 진동속도와 진동레벨의 비교)

  • Lee, Yeon-Soo;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.918-923
    • /
    • 2005
  • The vibration level (dB(V)) and vibration velocity (cm/sec) on the ground and buildings due to the differences of the measuring sites from the blasting source was investigated. To compare with vibration level and vibration velocity theirs magnitude was not surely directly proportional and vibration velocity 0.1 cm/sec was $45\~50$ dB(V). The difference between the measured vibration level and the calculated vibration level by Ejima's equation using vibration velocity PVS(peak vector sum) showed $21.0\~30.9$ dB(V) on the ground, $15.3\~23.6$ dB(V) on the apartment, respectively. And the correlation of vibration velocity and nitration level at the measuring sites of lower altitude showed higher than that of higher altitude.

Relationship between Rock Quality Designation and Blasting Vibration Constant "K" & Decay Constant "n" by Bottom Blasting Pattern (바닥발파에서 암질지수(RQD)와 발파진동상수 K, n의 관계)

  • 천병식;오민열
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.55-68
    • /
    • 1995
  • This paper is the analysis of the relationship between RQD and decay constant, blasting vi bration constant of cube root scaling and square root scaling, through experimental blast ins test in subway construction for excavation of shaft hole by bottom blasting. The magnitude of particle velocity is largely effected by the distance from blasting source, the maximum charge per delay and the properties of ground. In order to verify the effects of ground properties on blast-induced vibration, the relation-ship between magnitude of blasting vibration and Rock Quality Disignation which stands for joint property was studied. The results of test are verified that blasting vibration constant "K" and the absolute value("n") of decay constant relatively increse as RQD increased. According to the result, it can be predict the particle velocity by the blast -induced vibration in bottom blasting pattern.om blasting pattern.

  • PDF

A Study on the Efficiency of Horizontal Direction Deck-charge Blasting Method Using Electronic Detonator (전자뇌관을 이용한 수평방향 데크차지 발파공법의 효율성검토 연구)

  • Yoon, Ji-Sun;Hahn, Suk-Ju;Bae, Sang-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.5-11
    • /
    • 2013
  • In close to downtown construction, the main problem is complaints caused by blasting vibration and noise. To reduce blasting vibration and noise, deck-charge blasting method using electronic detonator can be more secure because there is no cut-off problem. And in this method it is possible to blast in horizontal direction. In this study, the efficiency of horizontal direction deck-charge blasting method using electronic detonator is compared to that of the existing blasting method. And the possibility of applying the construction site is evaluated. As a result, the reduction of blasting vibration, noise and secondary breaking has been determined, as well as large-scale blasting in the vibration criterion can be regulated by the overall increase in blasting efficiency.

A Calculation of Blasting Load using Input Identification Method & Evaluation of Structure's Vibration in Numerical Analysis (역해석기법을 통한 발파하중 산정 및 수치해석을 이용한 구조물의 진동영향평가)

  • Choi Jun-Sung;Lee Jin-Moo;Jo Man-Seop
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.232-240
    • /
    • 2006
  • In this paper, the blasting load has been calculated using Input Identification method and measured data in borehole blasting to reflect the exact blast behavior and soil vibration. The fitness of calculated blasting load is examined by comparing measured data and results of numerical analysis. According to the results, blasting load estimated by Input Identification method was more adequate than proposed blasting pressure equation in the reflection of blast behavior and soil vibration. In addition, it showed more reasonable results at the evaluation of structure's vibration in the 3D finite element method.