• Title/Summary/Keyword: Blasting Vibration

Search Result 433, Processing Time 0.022 seconds

Development of a new explicit soft computing model to predict the blast-induced ground vibration

  • Alzabeebee, Saif;Jamei, Mehdi;Hasanipanah, Mahdi;Amnieh, Hassan Bakhshandeh;Karbasi, Masoud;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.551-564
    • /
    • 2022
  • Fragmenting the rock mass is considered as the most important work in open-pit mines. Ground vibration is the most hazardous issue of blasting which can cause critical damage to the surrounding structures. This paper focuses on developing an explicit model to predict the ground vibration through an multi objective evolutionary polynomial regression (MOGA-EPR). To this end, a database including 79 sets of data related to a quarry site in Malaysia were used. In addition, a gene expression programming (GEP) model and several empirical equations were employed to predict ground vibration, and their performances were then compared with the MOGA-EPR model using the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2) and a20-index. Comparing the results, it was found that the MOGA-EPR model predicted the ground vibration more precisely than the GEP model and the empirical equations, where the MOGA-EPR scored lower MAE and RMSE, 𝜇 and 𝜎 closer to the optimum value, and higher R2 and a20-index. Accordingly, the proposed MOGA-EPR model can be introduced as a useful method to predict ground vibration and has the capacity to be generalized to predict other blasting effects.

A Study on the Related Equation of the Blast Vibration Velocity and the Vibration Level (발파진동속도와 진동레벨과의 관계식 연구)

  • Kim, Il-Jung;Ki, Kyoung-Chul;Cho, Young-Dong
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2009
  • The regression analysis of the ground vibration data (particle velocity and vibration level) was carried out to find an empirical relation between the vibration velocity (PVS, PPV, $V_V$) and the vibration level. The regression results revealed that the correlation of the blast vibration velocity and vibration level was quite good. It seems that the empirical relation obtained in this research will be applied to evaluating and managing the various environmental vibrations.

On the Influence Study to Building by Seoul Sub-way(8-6 site) Tunnel works (서울지하철공사 8-6공구터널 발파작업으로 인한 진동, 소음이 지상주택가 구조물에 미치는 연구조사)

  • Huh Ginn;Cheon Sang Back
    • Explosives and Blasting
    • /
    • v.12 no.1
    • /
    • pp.5-31
    • /
    • 1994
  • On the Seoul Sub-way Tunnel works (8-6 site ). Cautious blasting works were so effectivelly tarried out the vibration record were under 0.3cm /sec and blasting noise was under 75dB which was measured at the ground of house. As a result cautious blasting works under above allowable value was not influenced the structure of house and living. On the architectural survey, There were some hair crack on the wall and floors but this was not a crack from balsting work.

  • PDF

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works (삼천포화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.6
    • /
    • pp.97-105
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ø70mm on the calcalious sand stone (soft-moderate-semi hard Rock). The total numbers of fire blast were 88 round. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagation Law in Blasting Vibration (Equation omitted) where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum Charge per delay-period of eighit milliseconds o. more(kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D / W$^n$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over 100m distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30 ‥‥‥under 100m ‥‥‥V=41(D/$^3$√W)$\^$-1.41/ ‥‥‥A Over 100 ‥‥‥‥under 100m ‥‥‥V=121(D/$^3$√W)$\^$-1.56/ ‥‥‥B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

Analysis of Vibration Velocity Behavior of Rock Slope in Rock Blasting by Three-Dimensional Numerical Analysis (3차원 수치해석을 통한 암반 발파 시 암반 사면의 진동속도 거동 분석)

  • Chang-Young Park;Jae-Young Heo;Yong-Jin Kim;Seung-Joo Lee;Young-Seok Kim;Ji-Hoon Kim;Yong-Seong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.71-86
    • /
    • 2023
  • Rock blasting tests using underground penetration-type displacement sensors were conducted, and three-dimensional finite element numerical analyses were performed to assess their applicability and mitigate slope hazards during rock blasting. Additionally, parameters influencing vibration velocity were investigated during the tests. The results confirmed that underground penetration-type displacement sensors are suitable for monitoring rock slope behavior, and the numerical analyses revealed that the most influential parameter on vibration velocity during rock blasting is the unit weight. Furthermore, it was observed that vibration velocity decreases significantly with distance from the blast source, and proximity to the source leads to substantial variations in vibration velocity due to differences in elastic modulus and unit weight. Changes in internal friction angle and adhesive strength had minimal impact.

Analysis and Evaluation of the Effect of Blast-induced Vibration Adjacent to Industrial Facilities (산업시설 근접발파 시 발파진동 영향 분석 및 평가)

  • Kawk, Chang Won;Park, Inn Joon;Kim, Young Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.459-468
    • /
    • 2023
  • Power plant is a kind of basic industrial facility and might cause fatal industrial and human damage. In this study, the characteristics and effect of blast-induced vibration for tunnelling which underpass ○○ power plant in operation were evaluated. Previous blasting cases adjacent to industrial facilities were intensively reviewed, then allowable vibration criteria were suggested. 3 dimensional dynamic numerical analysis based on finite element method was performed to investigate particle velocity and resonance was examined by calculating the predominant frequencies. As a result, particle velocity at pump foundation which is nearest to the source was approached to the allowable criteria, therefore, the modified blasting pattern was newly suggested and confirmed the attenuation effect based on the test blasting. Consequently, appropriated decision-support procedure was established in case of adjacent blasting to industrial facilities.

Cautious Blasting Works on the Po-Ryong Power Plant #3 #4 Foundation (#3 #4호기 보령화력발전소 기초공사 정밀발파공법)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.21 no.4
    • /
    • pp.12-18
    • /
    • 1988
  • On the foundation work of Po-Ryong power plant #3 & #4. It was 30meters away from the running states of #1 & #2 plant site. In order to protect the #1 & #2 power plant facilities & factory structure. Allowable vibration was required below 0.07 gal. Therefore, it had to set up the anti-vibration trench to reduce the vibration reference and secondary. I applied the low gravity and low velocity explosives with M/S delay caps by cautious blasting pattern.

  • PDF

On the Influenced evaluation of ground Vibration to Closed building structure by Drop hammer pilling. (항타작업으로 인한 지반진동이 인접 빌딩 구조물에 미치는 영향평가)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.10 no.1
    • /
    • pp.3-7
    • /
    • 1992
  • In the pilling works in the city, it is tend to transfered to the non-vibration pilling works. This drop-hammer pilling executed with in 2 meters distance to neighbour building structure. in the rainy season. According to imperical formula which tested in similar site, Vibration damaged area is within 14 meters radius from drop-hammer pilling site. The loratories Data of Dae Woo of Korea hausing Authority are refered to above poject.

  • PDF

Careful Blasting to Reduce the Level of Ground Vibration in Open Excavation (노천 굴착에서 발파 진동의 크기를 감소시키기 위한 정밀발파)

  • Huh, Ginn
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.5-12
    • /
    • 1990
  • In this paper, ground vibration and other properties measurements were conducted to deter mine empirical equation based on careful test blasting with crawler drill(diameter 70-75mm). The empirical euqations for ground vibration are obtained as follows where V is peak particle velocity in cm 1 sec, D is distance in m and W is maximum charge weight per delay in kg

  • PDF

Comparative Study on the Characteristics of Ground Vibrations Produced from Borehole Blast Tests Using Electronic and Electric Detonators (전자뇌관과 전기뇌관을 사용한 시추공 발파시험에서의 지반진동 특성에 관한 비교 연구)

  • Choi, Hyung-Bin;Won, Yeon-Ho
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.37-49
    • /
    • 2010
  • Ground vibration caused by blasting in the urban area close to structures can give some indirect damage to human body and may lead to structural damage to buildings. At the stage of design or when complaints were filed by residents, the test blasting in borehole, which is most practical for expressing simple vibration wave form quantitatively, is usually chosen for assessing the degree of damage to structures. In this paper, some lessons gained from the application of electronic detonator triggering system in borehole test blasting are presented. The difference in delay time of detonator when borehole is blasted by electronic detonator and electric detonator are discussed. The peak particle velocities measured at the structure embedded in the similar rock layer to main line of tunnel at test site and measured at the road surface just above the tunnel having different overburden layers were analysed to draw their relationship. By comparing the results with those appearing in some published literatures, the usefulness of the borehole test blasting and the importance of delay time of detonator are addressed.