• Title/Summary/Keyword: Blasting Vibration

Search Result 437, Processing Time 0.021 seconds

Standardization of Cautious blasting (정밀발파의 표준화)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.8 no.3
    • /
    • pp.3-13
    • /
    • 1990
  • First ot of all, under given condition such as bit gage of 36mm Drill bit with right class of jack-leg-experimental test carried out from two face of Bench, firing of each hole brought 90 degree Angle face and them measured length of Burden and charged ammount of powder as following. $ca=\frac{A}{SW}$ A=Activated Area A=nd i=m S=Peripheral length of charged, room Ca=Rock Coeffiecency d: di=Hole diameter When constructed subway of Seoul in 1980 the blasting works increased complaint of ground vibration, in order to prevent the damage to structures. Some empirical equations were made as follows on condition with Jackleg Drill (Bit Gage 36mm) and within 30 meter distance between blasting site and structures. $V=K(D/W)^{-n}$ N=1.60 - 1.78 K= 48 - 138 Project is one of contineous works to above a determination of empirical equation on the cautious blasting vibration with Crawler Drill (70-75mm) in long distance. $V=41(D/\sqrt[3]{W})^{-1.41}$ $30m\le{D}\le{100m}$ $V=124(D/\sqrt[3]{W})^{-1.66}$ $100m\le{D}\le{285m}$.

  • PDF

A Case Study on the Vibration Characteristics of Tunnel Blasting in Igneous Rock (화성암반에서 터널발파 진동측정치의 분석에 관한 사례 연구)

  • 윤성현;안명석;이광열
    • Explosives and Blasting
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • Test blasting has been performed with V-cut to investigate the characteristics. Blasting vibrations were measured at two directions, the proceed direction and side direction. Propagation characteristics were determined by regression analysis; square root scaled distance and cube root scaled distance with maximum charge per delay of the blast. Testing result, The cross point was 62m in the allowable vibration velocity of 3mm/sec and 46m In 5mm/sec. Also, vibration level with measuring point was highest and decayed fastest, adapting to cube root scaled distance, for the proceed direction on ground.

Comparative review and interpretation of the conventional and new methods in blast vibration analyses

  • Uyar, G. Gulsev;Aksoy, C.O.
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.545-554
    • /
    • 2019
  • The customary approach used in the blast vibration analysis is to derive empirical relations between the peak particle velocities of blast-induced waves and the scaled distance, and to develop patterns limiting the amounts of explosives. During the periods when excavations involving blasting were performed at sites far from residential areas and infrastructure works, this method based on empirical correlations could be effective in reducing vibrations. However, blasting procedures applied by the fast-moving mining and construction industries today can be very close to, in particular cities, residential areas, pipelines, geothermal sites, etc., and this reveals the need to minimize blast vibrations not only by limiting the use of explosives, but also employing new scientific and technological methods. The conventional methodology in minimizing blast vibrations involves the steps of i) measuring by seismograph peak particle velocity induced by blasting, ii) defining ground transmission constants between the blasting area and the target station, iii) finding out the empirical relation involving the propagation of seismic waves, and iv) employing this relation to identify highest amount of explosive that may safely be fired at a time for blasting. This paper addresses practical difficulties during the implementation of this conventional method, particularly the defects and errors in data evaluation and analysis; illustrates the disadvantages of the method; emphasizes essential considerations in case the method is implemented; and finally discusses methods that would fit better to the conditions and demands of the present time compared to the conventional method that intrinsically hosts the abovementioned disadvantages.

A Case of Application-blasting in the Urban Blasting Works (도심지 터파기를 위한 응용발파 시공 사례)

  • Kim, Taihyun;Park, Yongwon;Cho, Raehun;Kim, Hongyool;Jeong, Byungho
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.18-30
    • /
    • 2016
  • A drill & blasting method using explosives is the most efficient way to break the rock in the urban projects. However, the blasting method cause vibration, noise and fly-rock as blast pollutions so that blasting wroks are restricted by adjacent structures such as apartment and residence houses. To conduct blasting works at near structures, the numbers of blast-holes a blast and the size of the blast are limited by kinds of detonators and initiation methods. So, the production rate is reduced and the construction period should be increased. Therefore, in this case the deck-charge blasting methods using available detonators in domestic market were designed and evaluated in order to confirm the application possibilities in specific urban sites.

On the influence survey to building by the cable Tunnel blasting works. (통신구 터널발파작업으로 인한 진동.소음이 지상주택에 미치는 영향 평가)

  • Huh Ginn;Cheon Sang Back
    • Explosives and Blasting
    • /
    • v.11 no.1
    • /
    • pp.5-33
    • /
    • 1993
  • On the cable Tunnel works. Cautious blasting works were so effective and carried out. The vibration record were under 0.4cm / sec and blasting noise are under 75dB Which it was measured at the ground of Tailor House. As a result cautious blasting works under above allowable value, are not Influenced the structure of house and living. On the architechtural survey, there were some hair crack on the wall but this was not crack from recently blasting work.

  • PDF

Influence of Inner-hole Priming Location on Ground Vibration (발파공내 기폭위치가 지반진동에 미치는 영향)

  • Kim, Jae-Woong;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • In this study, the influence of priming location inside a blast hole on the ground vibration has been studied. In most of the previous studies dealing with the ground vibration, the effect of priming location in a blast hole was usually considered in a limited way. Thus, it seems that the results of the studies can be applicable only to the relevant sites. Considering the fact that the mechanism of ground vibration caused by blasting is quite complex, the priming location can have a considerable effect on the ground vibration in certain situations and be an important parameter in a blasting design. To identify the characteristics of the wave propagation according to priming locations, total 72 test blasts were carried out with different spacing, burden, drilling length, and charge, and prediction equations were derived. The characteristics of ground vibration, which was changed according to the priming location, was analyzed by using the nomogram of peak particle velocity (PPV) record. Attenuation relations, which were also dependent on the priming location, were analyzed. In this case, four different amounts of charge, that is, 0.5, 1.6, 5, and 15 kg, were used for the test. This criterion of charge amount is specified in the "Blasting design and construction guidelines to road construction" by the Ministry of Land, Transport and Maritime Affairs of Korea.

Prediction for Measurement Range of Vibration due to Blasting of Underground Tunneling (발파 진동으로 인한 지표면 진동 계측 범위 산정에 대한 연구)

  • Kong, Suk-Min;Byun, Yoseph;Choi, Sang-Il;Kim, Jeong-Heum;Kim, Chang-Yong;Lee, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.7-17
    • /
    • 2024
  • Vibrations were measured at the surface of a GTX-A site to assess the impact of blasting on underground tunneling. A numerical analysis was conducted using the same ground and blast conditions as those at the site, accompanied by a comparative analysis of other GTX-A sites. This analysis determined the maximum vibration velocity at regular intervals directly above the blasting point at each site. The results were compared with domestic and international vibration standards to establish the vibration measurement range. The specified vibration measurement locations in domestic regulations—"measuring from the closest part of the structure's foundation to the blasting source, and if conditions make it impossible, measuring from the nearest surface to it"—were evaluated. Furthermore, this study underscores the significance of considering the tunnel drilling depth and soil conditions when selecting a vibration measurement location.

A Review of Standards for Allowable Limit of Blast Vibration According to the Safety Facilities and Improvement of Problems (보안물건의 종류에 따른 발파진동 허용기준 적용 사례 및 문제점 개선 연구)

  • Kim, Nam-Soo;Lee, Jong-Woo;Cho, Kyoung-Bin
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.50-58
    • /
    • 2013
  • Since various types of safety facilities have been located around blasting construction site, each of the institutions with regard to blast works has prepared limit criterion of blast vibration, respectively. But these criterions applied for limiting vibration are causing harmful effect including construction cost increasement and construction time extension due to exceedable high level application. In this study, more reasonable limit of blast vibration was suggested after reviewing criterions based on existing design and construction cases and analyzing of problems of applied criterions.

A Dynamic Analysis and Evaluation of a Building Structure due to Tunnel Blast by using Semi-Empirica Method (준경험적 방법을 이용한 터널발파 작업시 인접구조물의 동적해석 및 진동영향성 평가)

  • Son, Sung-Wan;Ru, Kuk-Hyun;Chun, Jong-Kun;Nam, Young-Sik;Kim, Dong-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.772-775
    • /
    • 2005
  • Most engineers, related to soil and civil dynamic field, have been interested in the direct dynamic design of building transmitted from soil and rock to structure due to blasting. However it is not easy to estimate the dynamic response of structures due to blasting by using analytical method because of difficulties of soil modeling, prediction of excitation force and so on. In this paper, dynamic analysis have been performed to predict vibration level and evaluate dynamic safety of structure adjacent to tunnel blast and the semi empirical method, which is based on vibration measurement data, has been employed to consider blast vibration characteristics.

  • PDF

Environmental Effects and Characteristics of Ground Vibration Caused by Tunnel Blasting in the Vicinity of an Apartment (터널 발파로 인한 아파트 인근지역에서의 지반진동 전파특성 및 영향 평가 연구)

  • 최병희;류창하;백승규
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Explosive blasting in tunnel excavation produces ground vibration and air blast as its side effects, which may cause complaints from nearby residents. This study was intended to investigate the propagation characteristics of ground vibration induced by tunnel blasting and to evaluate its effects on the residential structures near the site. We have conducted field measurements for 6 blasts and acquired vibration data from 70 measuring points, some of which on positioned inside the tunnel for comparative reason. Various documentation was reviewed to determine an allowable level of peak particle velocity for the residential structures in the area and the allowable limit was set to 0.5 cm/sec. Propagation equations for peak particle velocities were derived from regression analyses using the data acquired at both the surface and the underground tunnel. Finally we proposed appropriate predictive equations for the two areas and a safe blasting criterion.