• Title/Summary/Keyword: Blast resistant

Search Result 194, Processing Time 0.027 seconds

Effect of Mineral Admixture on Bond Properties between Polyolefin Based Synthetic Fiber and Cement Mortar (폴리올레핀계 합성 섬유와 시멘트 모르타르와의 부착 특성에 미치는 광물질 혼화재의 효과)

  • Lee, Jin-Hyeong;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.339-346
    • /
    • 2011
  • The effects of mineral admixtures on the bonding properties of cement mortar to polyolefin based synthetic fiber were evaluated. The mineral admixtures consisted of 0%, 5%, 10%, and 15% fly ash, blast furnace slag, and metakaolin in cement. Bond interactions between the cement mortar and the polyolefin based synthetic fiber were determined by Dog-bone bond tests. Bond tests of the polyolefin based synthetic fiber showed an increase in pullout load with the strength of the cement mortar. Also, the interface toughness of polyolefin based synthetic fiber in cement mortar increased as the fly ash, blast furnace slag, and metakaolin contents increased. The microstructure of polyolefin based synthetic fiber surface was examined after the pullout test to analyze the frictional resistant force according to the replacement ratio of fly ash, blast furnace slag, and metakaolin during the pullout process of polyolefin based synthetic fiber in cement mortar. The scratched of polyolefin based synthetic fibers increased with the replacement ratio of fly ash, blast furnace slag, and metakaolin. Also, the interface toughness was enhanced by adhesion forces induced by the fly ash, blast furnace slag, and metakaolin.

Development of Water-resistant Grout according to Blast Furnace Slag Fine Powder and Calcium Hydroxide Content (고로슬래그 미분말과 수산화칼슘 함유량에 따른 차수그라우트재 개발)

  • Seo, Hyeok;Park, Kyungho;Jeong, Sugeun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.541-555
    • /
    • 2020
  • The grouting method is used for reinforcing and waterproofing the soft ground, increasing the bearing capacity of structures damaged by lowering or subsidence due to rise and vibration, and for ordering. This study attempted to develop a blast furnace slag-based cementless grout material to increase the strength and hardening time of the grout material using reinforcing fibers. In this regard, in this study, it was used in combination with calcium hydroxide, which is an alkali stimulant of the three fine powders of blast furnace slag, and the content of calcium hydroxide was used by substituting 10, 20, and 30% of the fine powder of blast furnace slag. In addition, in order to compare the strength according to the presence or absence of reinforcing fibers, an experiment was performed by adding 0.5% of each fiber. As the content of carbon fibers and aramid fibers increased, the uniaxial compressive strength increased, and it was confirmed that the crosslinking action of the fibers in the grout material increased the uniaxial compressive strength. In addition, it was confirmed that the gel time sharply decreased as the content of the alkali stimulate increased.

Analysis of Gene-specific Molecular Markers for Biotic and Abiotic Stress Resistance in Tropically adapted Japonica Rice Varieties

  • Jung-Pil Suh;Sung-Ryul Kim;Sherry Lou Hechanova;Marianne Hagan;Graciana Clave;Myrish Pacleb
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.292-292
    • /
    • 2022
  • Since 1992, the Rural Development Administration (RDA), Republic of Korea in collaboration with International Rice Research Institute (IRRI) has developed 6 japonica rice varieties(MS11, Japonica 1, 2, 6, 7 and Cordillera 4) that are adaptable to tropical regions. However, these varieties show moderate resistance or susceptibility to certain biotic and abiotic stress. The development of varieties with more stable forms of resistance is highly desirable, and this could be possibly achieved through rapid introgression of known biotic and abiotic resistant genes. In this study, we analyzed the allele types of major biotic stress resistant genes including Xa5, Xa13, Xa21 and Xa25 for bacterial leaf blight, Pi5, Pi40, Pish and Pita2 for blast, tsv1 for rice tungro spherical virus, and Bph6, Bph9, Bph17, Bph18 and Bph32 for brown planthopper by using gene-specific molecular markers. In addition, seed quality related genes Sdr4 for preharvest sprouting and qLG-9 for seed longevity were also analyzed. The results revealed that2h5 and Xa25 resistance alleles showed in all varieties while Pi5 resistance allele showed only in MS11. The Pish resistance allele were present in five varieties except for Japonica 1. Meanwhile, for the rest of the genes, no presence of resistance alleles found in six varieties. In conclusions, most of tropical japonica varieties are lack of the major biotic stress resistant genes and seed quality genes (Sdr4 and qLG-9). Moreover, the results indicated that rapid deployment of a few major genes in the current tropical japonica rice varieties is urgent to increase durability and spectrum of biotic stress resistance and also seed dormancy/longevity which are essential traits for tropical environments.

  • PDF

Distribution of Rice Blast Disease and Pathotype Analysis in 2014 and 2015 in Korea (2014년과 2015년 잎 도열병 발생 분포 및 레이스 분포 현황)

  • Kim, Yangseon;Go, Jaeduk;Kang, In Jeong;Shim, Hyeong-Kwon;Shin, Dong Bum;Heu, Sunggi;Roh, Jae-Hwan
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.264-268
    • /
    • 2016
  • The nursery test against rice blast in Korea from 2014 to 2015 was analyzed. The average of disease severity of leaf blast in 12 sites showed $3.7{\pm}2.1$ in 2014 and $4.4{\pm}2.1$ in 2015. Disease severity of leaf blast in Icheon and Cheolwon was increased ranging from $2.8{\pm}2.2$ in 2014 to $6.3{\pm}1.8$ in 2015. Using a designation system, a total of 588 isolates collected those years were categorized into 34 races in 2014 and 51 races in 2015 based on the reaction pattern of Korean differential varieties. The blast isolates of 2015 were more diverse than those in 2014. The ratios of KI race to KJ race were 54:46 in 2014 and 70:30 in 2015; however, the predominant race population was KJ-301 as 16%, and KI-101 as 15% in 2014 and 2015, respectively. These results indicate that the distribution of the blast races is getting more diverse in Korea, therefore, this research would provide the possibility to predict race distribution and change to prevent the outbreak of rice blast and will also serve as a useful information for breeding of resistant rice cultivar against blast.

Characterization of Rice Mutants with Enhanced Susceptibility to Rice Blast

  • Kim, Hye-Kyung;Lee, Sang-Kyu;Cho, Jung-Il;Lee, Sichul;An, Gynheung;Jwa, Nam-Soo;Kim, Byung-Ryun;Cho, Young-Chan;Han, Seong-Sook;Bhoo, Seong-Hee;Lee, Youn-Hyung;Hong, Yeon-Kyu;Yi, Gihwan;Park, Dae-Sup;Hahn, Tae-Ryong;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.385-391
    • /
    • 2005
  • As a first step towards identifying genes involving in the signal transduction pathways mediating rice blast resistance, we isolated 3 mutants lines that showed enhanced susceptibility to rice blast KJ105 (91-033) from a T-DNA insertion library of the japonica rice cultivar, Hwayeong. Since none of the susceptible phenotypes co-segregated with the T-DNA insertion we adapted a map-based cloning strategy to isolate the gene(s) responsible for the enhanced susceptibility of the Hwayeong mutants. A genetic mapping population was produced by crossing the resistant wild type Hwayeong with the susceptible cultivar, Nagdong. Chi-square analysis of the $F_2$ segregating population indicated that resistance in Hwayeong was controlled by a single major gene that we tentatively named Pi-hy. Randomly selected susceptible plants in the $F_2$ population were used to build an initial map of Pi-hy. The SSLP marker RM2265 on chromosome 2 was closely linked to resistance. High resolution mapping using 105 $F_2$ plants revealed that the resistance gene was tightly linked, or identical, to Pib, a resistance gene with a nucleotide binding sequence and leucine-rich repeats (NB-LRR) previously isolated. Sequence analysis of the Pib locus amplified from three susceptible mutants revealed lesions within this gene, demonstrating that the Pi-hy gene is Pib. The Pib mutations in 1D-22-10-13, 1D-54-16-8, and 1C-143-16-1 were, respectively, a missense mutation in the conserved NB domain 3, a nonsense mutation in the 5th LRR, and a nonsense mutation in the C terminus following the LRRs that causes a small deletion of the C terminus. These findings provide evidence that NB domain 3 and the C terminus are required for full activity of the plant R gene. They also suggest that alterations of the resistance gene can cause major differences in pathogen specificity by affecting interactions with an avirulence factor.

Evaluation on Mechanical Performance and Chloride Ion Penetration Resistance of On-Site Shotcrete Made with Slurry-Type Accelerator (슬러리형 급결제를 활용한 현장적용 숏크리트의 역학적 성능 및 염해저항성 평가)

  • Kim, Hyun-Wook;Yoo, Yong-Sun;Han, Jin-Kyu;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.507-515
    • /
    • 2018
  • The purpose of this research is to develop a slurry-type accelerator that contains various beneficial properties such as reduction of dust generation, lower alkalinity, early age strength development, etc., and uses such slurry type accelerator to produce high performance shotcrete that present excellent resistant against chloride ion penetration. In this work, shotcrete mixtures of 0.44 and 0.338 water-to-binder ratio (w/b) were produced at construction site using slurry-type accelerator. The mechanical properties and chloride ion penetration resistance of such shotcrete (including base concrete) were evaluated. According to the experimental results, the slurry-type accelerator was successfully used to produce both w/b 0.44 and 0.338 shotcretes. The 1 day and 28 day compressive strength of shotcrete were found to be closer to or higher than 10MPa and 40MPa, respectively. The w/b 0.338 shotcrete that used 40% replacement of blast furnace slag showed lower compressive strength than w/b 0.44 shotcrete without any mineral admixture at 1 day. However, the compressive strength with 40% blast furnace slag increased significantly at 28 day. Moreover, there was more than 50% increase in chloride ion penetration resistance with blast furnace slag, showing its strong potential for higher performance shotcrete application.

A Study on the Durability of Concrete made with Various Cements Containing Additive (시멘트 혼합재 첨가에 따른 콘크리트 내구 특성)

  • 김창범;조계흥;최재웅;김동석;박춘근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.687-692
    • /
    • 1998
  • This paper covers concrete durability made with portland cement type I and V, and granulated blast furnace slag blended cements 40 and 60%. Typical properties of cements and compressive strength development, drying shrinkage, carbonation, freezing and thawing properties of concretes were investigated. In addition, effects of CI penetration on various concretes with/without a freezing and thawing treatment were also studied. Portland cement type I and V were superior to the blended cement in the properties of compressive strength development, drying shrinkage, carbonation and freezing and thawing durability. In the respect of resistant of CI Blended cement showed better than the portland cement due to high permeability. But the blended cement with a freezing and thawing treatment presented a much decreased resistance of CI penetration.

  • PDF

Evaluation of Chloride Ion Penetration Resistance of Coal Gasification Slag Replaced Concrete (석탄가스화 용융 슬래그 치환 콘크리트의 염화이온 침투 저항성 검토)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.166-167
    • /
    • 2019
  • In this study, to test the performance of concrete used as a concrete admixture as a recycling method of CGS, gypsum was mixed and the chloride ion penetration resistance test of CGS and BFS substituted concrete was conducted. As a result, it was found that without gypsum type test specimen, the CGS sustituted test specimens had lower chloride ion penetration resistance than the BFS substituted specimens. When gypsum was added, it was confirmed that the chloride ion penetration resistance was poor regardless of the type of admixture. In addition, it was confirmed that both admixtures were less resistant to chloride ion penetration than OPC, regardless of the presence of gypsum. However, considering the uneven quality variation of coal, which greatly affects the quality of CGS, further research is needed.

  • PDF

The diathermy scratch pad: A cheap and efficient tool for chemical and explosion-related burns

  • Wong, Allen Wei-Jiat;Hong, Qi En;Hui, Cheryl Li Yu;Chong, Si Jack
    • Archives of Plastic Surgery
    • /
    • v.46 no.1
    • /
    • pp.88-91
    • /
    • 2019
  • The burn center in our hospital is a national and regional (Southeast Asia) center. Of all admissions, 10% are related to blast explosions, and 8% due to chemical burns. In the acute burn management protocol of Singapore General Hospital, early surgical debridement is advocated for all acute partial-thickness burns. The aim of early surgical debridement is to remove all debris and unhealthy tissue, preventing wound infection and thereby expediting wound healing. In chemical burns, there can be stubborn eschars that are resistant to traditional debridement. We would like to present a novel technique using the diathermy scratch pad as a cheap and efficient tool for the dual purpose of surgical debridement and dermabrasion.