• Title/Summary/Keyword: Blast furnace slag

Search Result 1,276, Processing Time 0.033 seconds

Optimal Mixture Proportion for High Performance Concrete Incorporating Ground Granulated Blast furnace Slag

  • Choi Jae-Jin;Kim Eun-Kyum;Yoo Jung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.473-480
    • /
    • 2005
  • In this study, a mix design for self compacting concrete was based on Okamura's method and concrete incorporated just a ground granulated blast furnace slag. Replacement ratio of slag is in the range of $20-80\%$ of cement matrix by volume. For the optimal self compactability in mixture incorporating ground granulated blast furnace slag, the paste and mortar tests were first completed. Then the slump flow, elapsed time of 500mm slump flow, V funnel time and filling height by U type box were conducted in concrete. The volume of coarse aggregate in self compacting concrete was in the range of $50-60\%$ to the solid volume percentage of coarse aggregate. Finally, the compressive and splitting tensile strengths were determined in the hardened self compacting concrete incorporating ground granulated blast furnace slag. From the test results, it is desirable for self compacting concrete that the replacement of ground granulated blast furnace slag is in the range of $40-60\%$ of cement matrix by volume and the volume of coarse aggregate to the solid volume percentage of coarse aggregate with a limit of $55\%$.

Hydration Properties of Ordinary Portland Cement Using Mixture of Limestone and Blast Furnace Slag as Minor Inorganic Additives (소량 혼합재로서 석회석과 고로슬래그를 복합 사용한 보통 포틀랜드 시멘트의 수화특성)

  • Lee, Seung-Heun;Lim, Young-Jin;Cho, Jae-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.3-9
    • /
    • 2015
  • In this study, hydration properties of ordinary Portland cement were examined, shown from a limestone and blast furnace slag alone or their mixture up to 10% as a minor mineral additives. As of setting time, it was identified that final setting became faster as the amount of limestone mixture increased, which showed limestone accelerated early hydration faster than blast furnace slag. This is because limestone did accelerate the hydration of alite. At the age of 3 days, limestone 5%-blast furnace slag 5% mixture had the highest compressive strength of mortar. It is because hydration acceleration of alite by limestone, and $Ca(OH)_2$ that was additionally formed by hydration acceleration of alite reacted with blast furnace slag, and as a result, additionally created C-S-H hydrate. Regarding the hydration properties by the age of 7 and 28 days, limestone 3%-blast furnace slag 7% of composited mixture showed the largest compressive strength, and in comparison with the 3 days in curing age. This period is when hydration reaction of blast furnace slag is active and the amount of hydrate depends on the amount of blast furnace slag mixture more than that of the limestone mixture. And in order to vitalize hydration reaction of blast furnace slag the amount of $Ca(OH)_2$ created has to increase, and thus, a small amount of limestone is necessary that can accelerate the hydration of alite. Therefore, after the age of 7 days, the fact that there were a large amount of blast furnace slag mixture and small amount of limestone mixture was effective to the strength development of ordinary Portland cement.

Properties of Reaction Rim on Blast Furnace Slag Grain with Alkali Activator according to Hydration Reaction (알칼리 자극제(刺戟劑)에 의해 고로(讀爐) 수쇄(水碎) 슬래그의 주위(周圍)에 형성(形成)된 Reaction Rim의 특성(特性))

  • Lee, Seung-Heun;Mun, Young-Bum
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.42-48
    • /
    • 2009
  • Since there are $OH^-,\;[SiO_4]^{4-}$ ion of high concentration at early hydration in the system added with activator (NaOH+$Na_2OSiO_2$) in the blast furnace slag, different from cement hydration, hydration progresses fast without induction period and forms reaction rim around the blast furnace slag grain. $0.6{\mu}m$ reaction rim was formed around the blast furnace slag grain from the 1 day of reaction period, and the thickness of reaction rim increases over the reaction time, growing to $1{\mu}m$ on the 28 days. Unreacted blast furnace slag grain deformed from angular shape to the spherical shape. Mole ratio of Ca/Si tends to decrease from inside of blast furnace slag grain to reaction rim. Difference of Ca/Si mole ratio between reaction rim and inside the blast furnace slag grain decreased and generated hydrate was a poor crystalline CSH(I) with Ca/Si mole ratio less than 1.5.

Effect of the Replacement Ratio and Sources of Blast Furnace Slag Powder on the Fundamental Properties of Recycled Fine Aggregates Based Mortar (고로슬래그 미분말의 산지 및 치환율 변화가 순환잔골재 사용 시멘트 모르타르의 특성에 미치는 영향)

  • Han, Cheon-Goo;Zhao, Yang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • In this study, the quality of blast furnace slag and the engineering properties of recycled aggregate based mortar with variable replacement of blast furnace slag have been focused. Blast furnace slag(BS) manufactured in various areas in Korea were prepared for this study. For the investigation results, 4 types(among the all of 9 types) of the experimental results were identified as below the standard level when using blast furnace slag chosen from different factories. Especially the particle size of the blast furnace slag was considered as the largest problem. When using BS in the recycled aggregates based mortar, the increase amount of blast furnace slag, increased the fluidity but delayed the setting time and decreased strength at early age. Based on the relationship of the amount of BS and the engineering properties of mortar, this study found that the amount of $SO_3$ and L.O.I affect the setting time, 3 days strength and 91 days strength to the certain standard level.

Strength and Shrinkage of Geopolymer Mortar with Mineral Admixtures (혼화재료에 따른 지오폴리머의 강도 및 건조수축)

  • Yang, Joo-Kyoung;Kim, Hyo-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • Slump flow, compressive strength, flexural strength and drying shrinkage were measured to evaluate workability and mechanical performance of geopolymer. Experimental parameters include the addition of gypsum, blending ratio of blast furnace slag and fly ash and addition of shrinkage reducing agent. Geopolymer using blast furnace slag mixed with gypsum showed larger slump flow than blast furnace slag without gypsum. The slump flow when blending ratio of blast furnace slag and fly ash is 5:5 tended to be larger than the slump flow when blending ratio is 8:2. Geopolymer using blast furnace slag without gypsum showed higher compressive strength and flexural strength than blast furnace slag mixed with gypsum. Compressive strength and flexural strength tended to be higher when blending ratio of blast furnace slag and fly ash was 8:2 than when blending ratio was 5:5. Drying shrinkage decreased with increasing fly ash and blast furnace slag without gypsum, and it was found that shrinkage reducing agent is effective to reduce drying shrinkage of geopolymer.

Rheological Properties of Cement Pastes Blended Finex-Slag Powder (파이넥스 슬래그 미분말을 혼합한 시멘트 페이스트의 유동특성)

  • Lee, Keun-Jae;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.657-661
    • /
    • 2009
  • In this study, rheological properties of cement pastes containing ground Finex-slag (4000, 6000, 7000 c$m^2$/g) were investigated bymini-flow test and coaxial cylinder viscometer. And also blast furnace slag(4000, 6000, 7000 c$m^2$/g) were used for comparison. According to the experimental results, Finex-slag and blast furnace slag showed very similar trend in the rheological properties of the cement pastes. The fluidity of cement pastes blended Finex-slag and blast furnace slag powder were improved by high replacement ratio. In the relationship of plastic viscosity and yield stress appeared the tendency of the proportion greatly. And in the relationship of plastic viscosity, yield stress and mini-flow appeared the tendency of the inverse proportion.

A Fluidity and Compressive Strength Properties of Blast Furnace Slag Based Non-Cement Paste Containing Ferronickel Slag Powder (페로니켈슬래그 미분말 혼입에 따른 고로슬래그 기반 무시멘트 페이스트의 유동성 및 압축강도 특성)

  • Kim, Young-Uk;Lee, Kyung-Su;Oh, Tae-Gue;Jeong, Su-Bin;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.205-206
    • /
    • 2019
  • This study investigated the fluidity and compressive strength properties of blast furnace slag based non-cement paste containing ferronickel slag powder to evaluate the possibility of use in for cement replacement materials. As a result, the fluidity of non-cement paste showed a higher flow as the mixing ratio of ferronickel slag powder increased. The compressive strengths similar to those of the non-cement paste using only blast furnace slag powder were obtained when 5 and 10% of ferronickel slag powder were used.

  • PDF

Strength Characteristics of Blast Furnace Slag Concrete (미분말 고로슬래그를 사용한 콘크리트의 강도특성)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.137-143
    • /
    • 1997
  • The objective of this study is to find the strength properties of concrete using blast furnace slag. Its mechanical strength properties investigated include compressive strength, flexural strength, and tensile strength. The main expeirmental variables were cement type, coarse aggregate size(19, 25mm), and water/cement ratio(28, 32, 36%). The principal results obtained from this study are as follows ; it was possible to obtain the compressive strength of $500{\sim}700kg/cm^2$ concrete by using the blast furnace slag. Therefore, blast furnace slag was proved to be superior to ordinary portland cement in manufacturing the high strength concrete with the same mix conditions. In the near furture, concrete using blast furnace slag is expected to be practically used in the field.

  • PDF

Evaluation on the Durability of Concrete Replaced to Blast Furnace Slag (고로슬래그 미분말을 치환한 콘크리트의 내구특성 평가)

  • Lee, Se-Bum;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Choe, Gyeong-Cheol;Koo, Kyung-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.249-251
    • /
    • 2012
  • Concrete based on blast-furnace slag has a problem that its deterioration occurs process and quality of concrete are difficult to control. Therefore, it is judged that organized and comprehensive R&D will be continuously performed. In this study, the durability of concrete replaced with blast-furnace slag was evaluated for a solution. Experimental results, Concrete based on blast-furnace slag improved the durability.

  • PDF

An Experimental Study on the Prediction Model for the Compressive Strength of Concrete with Blast Furnace Slag by Maturity Method (고로슬래그미분말 혼입 콘크리트의 적산온도를 이용한 강도예측모델에 관한 실험적 연구)

  • Yang, Hyun-Min;Cho, Myung-Won;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.107-108
    • /
    • 2012
  • The study on the strength prediction using Maturity is mainly focused on, but the study on the concrete mixing blast furnace slag powder is insufficient. The purpose of this study is to investigate the relationships between compressive strength and equivalent age by Maturity function and is to compare and examine the strength prediction of concrete mixing Blast Furnace Slag Power using ACI and Logistic Curve prediction equation. So it is intended that fundamental data are presented for quality management and process management of concrete mixing Blast Furnace Slag Power in the construction field.

  • PDF