• Title/Summary/Keyword: Blast Resistance

Search Result 532, Processing Time 0.028 seconds

Analytical Assessment of Blast Damage of 270,000-kL LNG Storage Outer Tank According to Explosive Charges (270,000 kL급 LNG 저장 탱크 외조의 폭발량에 따른 손상도 해석적 평가)

  • Kim, Jang-Ho Jay;Choi, Seung-Jai;Choi, Ji-Hun;Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.685-693
    • /
    • 2016
  • The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridionally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.

The Influence of Temperature and Water Stress on the Varietal Reactions of Rice to the Inoculum of the Blast Infected Leaves (BIL) (도열병 이병엽접종원에 대한 수도 품종의 반응에 미치는 온도 및 Water Stress의 영향)

  • 이순구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.137-145
    • /
    • 1981
  • Using the milled, blast infected leaves (BIL) as an inoculum source on the screening for the resistance to blast of rice plant was a simple and useful technique. The temperature with high (25^\circ C\sim 35^\circ C) and low (15^\circ C\sim 28^\circ C) and the water stressed or not, was conditioned of to the inoculation with the BIL to the test varieties in seedling stage. In low temperature, most of the varieties were more infected with blast, however the Indica-Japonica hybrids were more infected in high temperature conditions. The water stressed was more infected with blast than the not stressed. The interaction of variety with water stress was not so much as that of variety with temperature. Resistant reaction to blast (BIL) was not affected by the temperature and water stress, but the moderately resistant or susceptible one was much affected by them. Inoculum of BIL was virulent to the newly bred Indica-Japonica hybrid cultivars such as Tongil, Nopung, etc, but not virulent to the Japonica cultivars such as Nongbaek, Jinheung, etc. The discrete, mixed or variable lesions were observed mainly in the moderately resistant or susceptible cultivars such as Kanto 51, Yashiromochi, Ishikari-shiroke, etc.

  • PDF

Sulfate and Freeze-thaw Resistance Characteristic of Multi-component Cement Concrete Considering Marine Environment (해양환경을 고려한 다성분계 시멘트 콘크리트의 황산염 및 동결융해 저항 특성)

  • Kim, Myung-Sik;Beak, Dong-Il;Kang, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • Recently, concrete using multicomponent blended cement has been required to increase the freeze-thaw and sulfate resistances of concrete structures exposed to a marine environment. Thus, the purpose of this study was to propose the use of concrete containing multicomponent blended cement as one of the alternatives for concrete structures exposed to a marine environment. For this purpose, batches of concrete containing ordinary portland cement (OPC), binary blended cement (OPC-G, G: ground granulated blast slag), ternary blended cement (OPC-GF, F: fly ash), and quaternary blended cement (OPC-GFM, M: mata-kaolin) were made using a water-binder ratio of 50%. Then, the durability levels, including thesulfate and freeze-thaw resistances, were estimated for concrete samples containing OPC, OPC-G, OPC-GF, and OPC-GFM. It was observed from the tests that the durability levels of the concrete samples containing OPC-G and OPC-GF were found to be much better than that of the concrete containing OPC. The optimum mixing proportions were a40% replacement ratio of ground granulated blast slag for the binary blended cement and a30% replacement ratio of ground granulated blast slag and 10% fly ash for the ternary blended cement.

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.

Evaluation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar (무(無)시멘트 알칼리 활성(活性) 모르타르의 수축(收縮) 및 내구성(耐久性) 평가(評價))

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • In this study, we investigated the strength, shrinkage and durability of alkali-activated mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless alkali-activated concrete. In order to compare with the alkali-activated mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to shrinkage and freezing-thawing of the cementless alkali-activated mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, reduce shrinkage of about 40% and improve freezing-thawing durability of approximately 20%, but promote the velocity of carbonation of 2~3 times.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety

  • Abed-Ashtiani, Farnaz;Kadir, Jugah-Bin;Selamat, Ahmad-Bin;Hanif, Ahmad Husni Bin-Mohd;Nasehi, Abbas
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.164-171
    • /
    • 2012
  • Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.

Performance Evaluation on Blast-resistant of Gastight Door using Numerical Simulation (수치해석을 활용한 가스차단문의 폭발압력저항 성능평가)

  • Shin, Baegeun;Kim, Jiyu;Kim, Euisoo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2022
  • As the scale of explosions diversifies along with the expansion of gas handling and storage facilities, studies on explosion-proof facilities in preparation for accidents is being actively conducted. The gastight door blocks the expansion pressure caused by blast waves or internal fires, and at the same time protects the personnel and equipment inside. For gastight doors, the regulations related to explosion-proof design are not clearly presented, and studies on the explosion pressure resistance performance evaluation of the facility are insufficient. In this study, the gastight door was modeled in a 3D shape with reference to the regulation ASTM regarding the gastight door standard. Afterwards, evaluation for blast-resistant performance of gastight door using Numerical simulation was evaluated by using ANSYS Explicit Dynamics to compare the deformation.

Overexpression of a Rice Diacylglycerol Kinase Gene OsBIDK1 Enhances Disease Resistance in Transgenic Tobacco

  • Zhang, Weidong;Chen, Jie;Zhang, Huijuan;Song, Fengming
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.258-264
    • /
    • 2008
  • A rice diacylglycerol kinase (DGK) gene, OsBIDK1, which encodes a 499-amino acid protein, was cloned and characterized. OsBIDK1 contains a conserved DGK domain, consisting of a diacylglycerol kinase catalytic subdomain and a diacylglycerol kinase accessory subdomain. Expression of OsBIDK1 in rice seedlings was induced by treatment with benzothiadiazole (BTH), a chemical activator of the plant defense response, and by infection with Magnaporthe grisea, causal agent of blast disease. In BTH-treated rice seedlings, expression of OsBIDK1 was induced earlier and at a higher level than in water-treated control seedlings after inoculation with M. grisea. Transgenic tobacco plants that constitutively express the OsBIDK1 gene were generated and disease resistance assays showed that overexpression of OsBIDK1 in transgenic tobacco plants resulted in enhanced resistance against infection by tobacco mosaic virus and Phytophthora parasitica var. nicotianae. These results suggest that OsBIDK1 may play a role in disease resistance responses.

A Model to Forecast Rice Blast Disease Based on Weather Indexing (기상지수에 의한 벼도열병 예찰의 한 모델)

  • Kim Choong-Hoe;MacKenzie D. R.;Rush M. C.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.210-216
    • /
    • 1987
  • A computer program written to predict blast occurrence based on micro climatic events was developed and tested as an on-site microcomputer in field plots in 1984 and 1985. A microcomputer unit operating on alkaline batteries; continuously monitored air temperature, leaf wetness, and relative humidity; interpreted the microclimate information in relation to rice blast development and displayed daily values (0-8) of blast units of severity (BUS). Cumulative daily BUS values (CBUS) were highly correlated with blast development on the two susceptible cultivars, M-201 and Brazos grown in field plots. When CBUS values were used to predict the logit of disease proportions, the average coefficients of determination $(R^2)$ between these two factors were 71 to $91\%$, depending on cultivar and year. This was a significant improvement when compared to 61 to $79\%$ when days were used as a predictor of logit disease severity. The ability of CBUS to predict logit disease severity was slightly less with Brazos than M-201. This is significant inasmuch as Brazos showed field resistance at mid-sea­son. The results in this study indicate that the model has the potential for future use and that the model could be improved by incorporating other variables associated with host plants and pathogen races in addition to the key environmental variables.

  • PDF