• Title/Summary/Keyword: Blank shape

Search Result 254, Processing Time 0.021 seconds

The Process Planning of Disc Spinning for a Large Wheel of Automobile (자동차용 대형 휠 디스크의 스피이닝 설계)

  • 이항수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.28-42
    • /
    • 1998
  • Spinning is one of the incremental forming process by the rotating mandrel and forming roller, and has been applied to manufacturing the wheel disc of automobile to simplify the manufacturing process and to improve the mechanical properties of product. In the proesent study the process variables have been extracted and considered to decide the specification of the spinning machine. The maximum values of working load and power have been evaluated and the blank size has been disigned. The shape and dimensionof forming roller have been designed and the process condition such a s rotational velocity of mandrel and the feedrate of roller have been decided.

  • PDF

Improvement of the Stamping Process for Sheet Metal Prototypes of an Auto-body with Finite Element Analysis (유한요소해석을 이용한 차체시작부품 프레스성형 공정 개선)

  • Kim, Se-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.496-504
    • /
    • 2011
  • This paper introduces a CAE-based design procedure in the press forming process for the fabrication of sheet metal parts used in proto-cars. The finite element analysis reveals formability problems during the forming process of a floor member and a front cross member that constitute a rear floor assembly. The study proposes the modification of the initial blank shape or intermediate trimming of the product to prevent failure during forming. It is confirmed by the tryout process as well as the finite element analysis that sound prototype can be obtained with the modified design. The finite element analysis result also provides fairly good prediction of springback amounts used for the post-compensation of the product.

Design Analysis and Field Try-out of Automotive Panel Dies (자동차 패널금형의 설계해석과 현장 트라이아웃)

  • 이종문;금영탁
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.127-134
    • /
    • 1999
  • This study suggests the practical method which can reduce the lead time of the field trial and design of the dies. The virtual manufacturing, with which the die design is evaluated by computer analysis, reveals the impropriety of a design before die makings. Three methods for reducing the die making process occupying over 60% of the automotive development are like follows: First, the crack and wrinkle occurrence can be prevented by virtually adjusting the blank holding force and drawbead force with a computer simulation. Second, the parts which can not remove the forming defects in spite of the adjustment of forming parameters need to modify the part geometry or punch temporary shape. Third, the simulation before field trial, and field trial simulation can be effectively used in die design.

  • PDF

A Study on Profile Ring Rolling Process of Titanium Alloy (타이타늄합금 형상 링 압연공정 연구)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.223-228
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was investigated by finite element(FE) simulation and experimental analysis. The process design of the profile ring rolling includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

A Study on Friction Coefficient for Sheet Metal Forming (판재 성형을 위한 마찰 계수에 관한 연구)

  • Park D. H.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.28-31
    • /
    • 2001
  • Friction for sheet metal forming affects improvement of deep drawing formability. The deep drawing is affected by many process variables, such as lubricant, blank shapes, shape radius and so on. Especially, lubrication is very important formability factor. In this study, in order to investigate fraction coefficient of sheet metal forming, we examined friction test about three conditions, such as non-lubrication, full lubrication and film lubrication. We measured friction coefficient according to pin load under the conditions like deep drawing die. Mean friction coefficient for film lubrication condition would be very useful value to improve drawability.

  • PDF

A Study on the Forming Limit Diagram Tests of Metal Sheets (금속 판재의 성형한계도 시험법에 관한 연구)

  • Jang, Uk-Kyeong;Jang, Yun-Ju;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.49-57
    • /
    • 2010
  • A forming limit diagram (FLD) defines the extent to which specific sheet material can be deformed by drawing, stretching or any combination of those two. To determine the forming limit curve (FLC) accurately, it is necessary to perform the tests under well-organized conditions. In this study, the influence of several geometric or process parameters such as the blank shape and dimensions, strain measuring equipments, test termination time, forming speed and lubricants on the FLC is investigated.

  • PDF

Design Analysis and Field Try-out of Automotive Panel Dies (자동차 패널금형의 설계해석과 현장 트라이아웃)

  • 이종문;이한수;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.25-32
    • /
    • 1998
  • This study suggested the practical method which can reduce the lead time of the field trial and design of the dies. The virtual manufacturing, with the die design is evaluated by computer analysis, reveals the impropriety of a design before making dies. Three methods for reducing the die making process occupying over 60% of the automotive development are like fellows : First, the crack virtually adjusting the blank holding force and draw bead force with a computer simulation. Second, the parts which can not remove the forming defects in spite of the adjustment of forming process parameters need to modify the part geometry or punch temporary shape. Third, the simulation before trial, field trial, and field trial simulation can be used effectively in the die design.

A Study on the Process Sequence Design of a Tub for the Washing Machine Container (세탁조의 제작공정해석 및 공정개선에 관한 연구)

  • 임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.359-374
    • /
    • 1994
  • Process sequence design in sheet metal forming process by the finite element method is investigated. The forming of sheet metal into a washing machine container is used to demonstrate the design of an improved process sequence which has fewer operations. The design procedure makes extensive use of the finite element method which has simulation capabilities of elastic-plastic modeling. A one-stage process to make an initial blank to the final product is simulated to obtain information on metal flow requirements. Loading simulation for a conventional method is also performed to evaluate the design criteria which are uniform thickness distribution around the finished part and maximum punch load within limit of available press capacity. The newly designed sequence has two forming operations and can achieve net-shape manufacturing, while the conventional process sequence has three forming operations. This specific case conventional process sequence has three forming operations. This specific case can be considered for application of the method and for development of the sequence design methodology in general.

  • PDF

New Technology of Metal Spinning (Metal 스피닝의 신기술 동향)

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.265-271
    • /
    • 2011
  • This paper investigates mainly on the technical development trend such as asymmetric technology and the metal spinning in heat treatment conditions. Although the classical spinning, so called conventional, shear, tube spinning, uses the axisymmetric shaped mandrel(which is same inner shape of the final product), new technology does not use it. and also spinning can be done with free mandrel.

  • PDF

Spring-back prediction for sheet metal forming process using hybrid membrane/shell method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • F. Pourboghrat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF