• Title/Summary/Keyword: Blank Design

Search Result 304, Processing Time 0.022 seconds

Application of Process Planning System for Non-Axisymmetric Deep Drawing Products (비축대칭 디프 드로잉 제품에 대한 공정설계 시스템의 적용)

  • 박동환;최병근;박상봉;강성수
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.591-603
    • /
    • 1999
  • A computer-aided process planning system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has been reported yet. Therefore, this study investigates process sequence design in deep drawing process and constructs a computer-aided process planning system for non-axisymmetric motor frame products with elliptical shape. The system developed consists of three modules. The first one os a 3-dimensional modeling module to calculate surface area for non-axisymmetric products. The second one is a blank design module that creates an oval-shaped blank with the identical surface area. The third one is a process planning module based on production rules that play the best important roles in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers. Especially, drawing coefficient, punch and die radii are considered as main design parameters. The constructed system for elliptical deep drawing products would be very useful to reduce lead time and improve accuracy for production.

  • PDF

Influence of Blankholding Force and Blank Diameter on the Drawability and Quality of Very Small Cylindrical Cups (극소형 원통컵의 드로잉성과 품질에 미치는 블랭크 홀딩력과 블랭크 직경의 영향)

  • Lee, K.S.;Kim, J.B.;Jung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.489-494
    • /
    • 2014
  • Micro forming is an appropriate process to manufacture very small metal parts which can be employed in the field of electronic devices or electrically controlled mechanical systems. The purpose of the current study was to investigate the influences of both blankholding force and blank diameter for the deep drawing of very small cups. It is essential to control the blankholding force because improper force can result in defects such as wrinkles in the flange or cracks in the corner of the drawn cups. In the current study blankholding force was controlled by springs connected to the blankholder of a press die. Exchangeable bushing dies with various die-corner radii were also used. To obtain the limit drawing ratio for each working condition several sizes of circular specimens were prepared using blanking tools. Beryllium copper(C1720) alloy sheet of $50{\mu}m$ thickness was chosen for the experiments. The maximum limit drawing ratio of 2.1 was achieved experimentally for the conditions of the blankholder force(BHF)=5.3kgf and Rd=0.3mm. Both thickness and hardness along the central section of drawn cups were measured and compared for different drawing conditions. It was found that the deviation of measured data in the thickness and hardness distribution increases with increasing blankholder force and blank diameter.

Optimization of Spring Layout for Minimizing Twist of Sheet Metal Pins in Progressive Shearing (프로그레시브 전단 공정에서 박판 핀 비틀림 최소화를 위한 스프링 배치 최적화)

  • Song, H.K.;Shim, J.K.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.501-506
    • /
    • 2014
  • Progressive shearing with blanking dies is commonly employed to produce large quantities of tiny sheet metal electronic parts. Sheet metal pins, which are narrow and long, that are sheared with a progressive die set are often twisted. The twist in the sheet metal pins, which usually occurs in the final shearing operation, generally decreases with increasing blank holding force. The blank holding forces in all shearing operations are not the same because of different shearing positions and areas. In the current study, the optimal layout of the springs in a progressive die set to minimize the twist of the sheet metal pin is proposed. In order to find the holding force acting on the tiny narrow blanks produced with the proposed springs during the shearing process, the equivalent area method is used in the structural analysis. The shearing of the sheet-metal pin was simulated to compute the twist angle associated with the blank holding force. The constraint condition satisfying the pre-set blank holding force from the previous shearing operations was imposed. A design of experiments (DOE) was numerically implemented by analyzing the progressive die structure and by simulating the shearing process. From the meta-model created from the experimental results and by using a quadratic response surface method (PQRSM), the optimal layout of the springs was determined. The twist of sheet metal pin associated with the optimal layout of the springs found in the current study was compared with that of an existing progressive die to obtain a minimal amount of twist.

Stamping Analysis and Die Design of Laser Welded Automotive Body (레이저 용접 차체의 성형해석과 금형설계)

  • Kim, Heon-Young;Shin, Yong-Seung;Kim, Koan-Hoi;Cho, Won-Seok
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.382-392
    • /
    • 1998
  • Computer simulations and test trials were carried out to obtain the optimal stamping conditions of the die design of the laser welded automotive body. The stamping process including gravity deflection bead calibration binder wrap, forming and spring back was simulated and compared with the results obtained from test trials. The production variables were determined from a preliminary operation and they were investigated in the simulation and the test trials. The formability was tested under the various conditions, such as the initial position of blank, blank holding force, corner radius and the shape of drawbead. Sound products without fracture, wrinkling and excessive weldline movement were produced by applying results obtained this investigation.

  • PDF

Design of Porcess Parameters in Axisymmetric Multi-step Deep Drawing by a Finite Element Inverse Method (유한요소 역 해석을 이용한 축대칭 다단계 박판성형에서의 공정변수 설계에 관한 연구)

  • Cho, Cheon-Soo;Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.300-310
    • /
    • 1997
  • A finite element inverse method is introduced for direct prediction of blank shapes, strain distributions, and reliable intermediate shapes from desired final shapes in axisymmetric multi-step deep drawing processes. This mothod enables the determination of process disign. The approach deals with the Hencky's deformation theory. Hill's second order yield criterion, simplified boundary conditions, and minimization of plastic work with constraints. The algorithm developed is applied to motor case forming, and cylindrical cup drawing with the large limit drawing ratio so that it confirms its validity by demonstrating resonably accurate numerical results of each problem. Numerical examples reveal the reason of difficulties in motor case forming with corresponding limit diagrams.

  • PDF

Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming (One-Step Forming을 이용한 박판성형 해석에 관한 연구)

  • Jeong, Dong-Won;Lee, Sang-Je;Kim, Gwang-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.11-17
    • /
    • 1999
  • The objective of this paper is to introduce very fast but still stable solution using finite element procedures, and it has been used in an iterative mode for product design applications. A lot of numerical techniques have been developed to deal with the material, geometric and boundary condition non-linearities occurred in the stamping process. One of them, the One-Step FEM is very efficient and useful tool for a design and trouble-shooting in various stamping processes. In this method, the mathod, the material is assumed to deform directly from the initial flat blank to the final configuration without any intermediate steps. The formulation is based on the deformation theory of plasticity and the upper bound theorem. As a result of the calculations, the initial blank shape is obtained, together with the material flow, strains and thickness distribution in the part.

  • PDF

Forming of Flat Type Automotive Suspension Cross Member with High Strength Steel (고강도강을 이용한 평판형 승용차 서스펜션 크로스 멤버의 성형)

  • Yin, Jeong-Je
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.155-163
    • /
    • 2011
  • The flat type automotive cross members with high strength steel have advantages in light weight and fewer parts compared to the hump type cross members. But the complex part shape of the flat type cross member and the poor formability of high strength steel make it difficult to form the parts without forming defects, such as splits and wrinkles. The purpose of this study is to develop the flat type automotive cross member with high strength steel. For that purpose, drawing processes are evaluated using PAM-$STAMP^{TM}$ and proper draw die and blank designs are proposed. Using the proposed die and blank design, the flat type upper and lower cross member could be formed successfully without forming defects.

Study on the Strip Layout & Die Design of HEV UV Terminal (HEV UV단자의 스트립 레이아웃과 금형설계에 관한 연구)

  • Choi, Kye-Kwang;Kim, Sei-Hwan;Cho, Yun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4691-4696
    • /
    • 2010
  • The This research paper deals with research on the 3D strip layout design of HEV UV terminal by utilizing the Cimatron Die Design, an automation module. To ensure smooth stamping of the product, strip layout was corrected for 33.5 degrees of slope, and blank layout of the double-width, 1-line, 1-pull out inner carrier was then optimized as a single arrangement. To mass-produce two different terminals from one common die, 3D strip layout design and die design were completed in 29 different processes.

A Study on the Process Design Expert System in Motor-Frame Die of an Automobile (자동차 모터 프레임 금형의 공정설계 전문가 시스템에 관한 연구)

  • Bae W. R.;Park D. H.;Park S. B.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.132-135
    • /
    • 2000
  • A process design expert system for rotationally symmetric deep drawing products has been developed The application of the expert system to non-axisymmetric components, however, has not been reported yet. Thus, in this present study, the expert system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first one is a recognition of shape module to recognize non-axisymmetric products. The second one is three dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third one is a blank design module to create an oval-shaped blank with the identical surface area. The forth one is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers.

  • PDF

Analysis-based Die Face Design for the Improvement of Surface Quality for a Heat Protect Panel of an Automobile (차량용 열차단판의 면품질 개선을 위한 성형해석 기반 금형면 설계)

  • Kim, K.P.;Kim, S.H.;Lee, D.G.;Jang, K.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.278-283
    • /
    • 2008
  • This paper concerns the die face design for a heat protect panel aided by the finite element forming analysis in order to eliminate the surface defect and to improve the surface quality. The CAE procedure of the stamping process is introduced in order to reveal the reason of surface inferiorities and to improve surface quality. Complicated shape of the product induces the surface inferiorities such as wrinkling due to the insufficient restraining force of the forming blank and the non-uniform contact of the blank with the tools. This paper proposes a new guideline for the die design which includes the modification of tool shapes and addition of the draw-beads on the tool surface for ensuring the increased the restraining force with the uniform contact condition. The effectiveness of the proposed design is verified by the forming analysis and is confirmed by the tryout operation in the press shop. The analysis and test results show that the modified process parameters such as tool shapes and draw-beads can reduce the tendency of wrinkling and improve surface quality.