• 제목/요약/키워드: Blade-to-Blade Flow

검색결과 1,077건 처리시간 0.032초

준 3차원 유동해석을 통한 증기 터빈의 회전익 설계 (Steam Turbine Rotating Blade Design Using Quasi-3 dimensional Flow Analysis)

  • 조상현;김영상;권기범;임홍식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.303-308
    • /
    • 2001
  • A rotating blade of steam turbines is designed using blade design system. To minimize the design time. quasi three dimensional flow analysis code is adopted to calculate blade section. The blade section lies on a streamline determined by previous steam turbine design procedures. The blade design system makes a transform of streamline coordinates, (m, r$\theta$), to (m', $\theta$) coordinates and all design procedure except 3 dimensional stack-up is performed in the coordinates. Each designed blade section is stacked-up and whole 3 dimensional blade can be modified by correcting 2D section, repeatly. The full 3D numerial analysis for the one stage including designed rotating blade will be performed later

  • PDF

토크 컨버터의 형상 분석 (Geometrical Analysis of a Torque Converter)

  • 임원석
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.197-212
    • /
    • 1997
  • The performance of a torque converter can be expressed by the performance parameters such as flow radius and flow angle, on the mean flow path. The geometric analysis of the torque converter is required to determine these parameters for the modeling of the torque converter. In general, the blade shape is depicted by three dimensional data at the mid-surface of blade or those of the pressure and suction side. To generate three dimensional model of the blade using the data mentioned above, a consistent data format and a shape generation algorithm are required. This paper presents a useful consistent data format of the blades and an algorithm for the geometrical shape generation. By the geometric analysis program to which the shape generation algorithm is embedded, the variation of blade angles in rotating element analyzed. Then finally, the analyzed results of geometric profile of a blade are compared with those of the blade design principle, so called forced vortex theorem.

  • PDF

고정된 터빈 블레이드의 베인에 대한 상대위치 변화가 끝단면 및 슈라우드의 열/물질전달 특성에 미치는 영향 (Effect of Vane/Blade Relative Position on Heat/Mass Transfer Characteristics on the Tip and Shroud for Stationary Turbine Blade)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.446-456
    • /
    • 2006
  • The effect of relative position of the stationary turbine blade for the fixed vane has been investigated on blade tip and shroud heat transfer. The local mass transfer coefficients were measured on the tip and shroud fur the blade fixed at six different positions within a pitch. A low speed stationary annular cascade with a single turbine stage was used. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is 2.5% of the blade chord. A naphthalene sublimation technique was used for the detailed mass transfer measurements on the tip and the shroud. The inlet flow Reynolds number based on chord length and incoming flow velocity is fixed to $1.5{\times}10^5$. The results show that the incoming flow condition and heat transfer characteristics significantly change when the relative position of the blade changes. On the tip, the size of high heat/mass transfer region along the pressure side varies in the axial direction and the difference of heat transfer coefficient is up to 40% in the upstream region of the tip because the position of flow reattachment changes. On shroud, the effect of tip leakage vortex on the shroud as well as tip gap entering flow changes as the blade position changes. Thus, significantly different heat transfer patterns are observed with various blade positions and the periodic variation of heat transfer is expected with the blade rotation.

Performance Analysis of a Combined Blade Savonius Wind Turbines

  • Sanusi, Arifin;Soeparman, Sudjito;Wahyudi, Slamet;Yuliati, Lilis
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.54-62
    • /
    • 2017
  • The Savonius wind turbine has a lower performance than other types of wind turbines which may attract more study focus on this turbine. This study aimed to improve wind turbine performance by combining a conventional blade with an elliptical blade into a combined blade rotor. The analysis was performed on three blade models in computational fluid dynamics (CFD) using ANSYS_Fluent Release 14.5. Then the results were verified experimentally using an open wind tunnel system. The results of the numerical simulation were similar to the experimental and showed that the combined blade rotor has better dragging flow and overlap flow than the conventional and elliptical blade. Experimental verification showed that the combined blade was to increase the maximum coefficient of power ($Cp_{max.}$) by 11% of the conventional blade and to 5.5% of the elliptical blade.

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

원자력 발전소용 블레이드링 건전성 평가 (Integrity Assessment of Stationary Blade Ring for Nuclear Power Plant)

  • 박정용;정용근;박종진;강용호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.85-89
    • /
    • 2004
  • The inner side between HP stationary blades in #1 turbine of Nuclear Power Plant A is damaged by the FAC(flow assisted corrosion) which is exposed to moisture. For many years the inner side is repaired by welding the damaged part, however, FAC continues to deteriorate the original material of the welded blade ring. In this study, we have two stages to verify the integrity of stationary blade ring in nuclear power plant A. In the stage I, replication of blade ring is performed to survey the microstructure of blade ring. In the stage II, the stress analysis of blade ring is performed to verify the structural safety of blade ring. Throughout the two stages analysis of blade ring, the stationary blade ring had remained undamaged.

  • PDF

회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구 (Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing)

  • 김윤제;전용렬
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF

터빈익렬의 이동에 따른 손실 및 유동장에 관한 실험적 연구 (Losses and Flow Structure for the Movement of Turbine Blade Row)

  • 조수용;정양범
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.70-79
    • /
    • 2017
  • The output power of turbine is greatly affected by the losses generated within the passage. In order to develop a better turbine or loss models, an experimental study was conducted using a linear cascade experimental apparatus. The total pressure loss and flow structures were measured at two cross-sectional planes located downstream of blade row. Measurement was conducted in a steady state for the several different locations of the blade row along the rotational direction. The blade row moved by 20 % of the pitch, and tip clearance was varied from 2% to 8%. Axial-type blades were used and its blade chord was 200mm. A square nozzle was applied and its size was $200mm{\times}200mm$. The experiment was conducted at a Reynolds number of $3{\times}10^5$ based on the chord. Nozzle flow angle sets to $65^{\circ}$ based on the axial direction and the solidity of blade row was 1.38. From the experimental results, the total pressure loss was greatly varied in the receding region than in the entering region. The flow properties within the blade passage were strongly changed according to the location of blade row.

Aerodynamic Analysis of Helicopter Rotor by Using a Time-Domain Panel Method

  • Kim, J.K.;Lee, S.W.;Cho, J.S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.638-642
    • /
    • 2008
  • Computational methods based on the solution of the flow model are widely used for the analysis of lowspeed, inviscid, attached-flow problems. Most of such methods are based on the implementation of the internal Dirichlet boundary condition. In this paper, the time-domain panel method uses the piecewise constant source and doublet singularities. The present method utilizes the time-stepping loop to simulate the unsteady motion of the rotary wing blade. The wake geometry is calculated as part of the solution with no special treatment. To validate the results of aerodynamic characteristics, the typical blade was chosen such as, Caradonna-Tung blade and present results were compared with the experimental data and the other numerical results in the single blade condition and two blade condition. This isolated rotor blade model consisted of a two bladed rotor with untwisted, rectangular planform blade. Computed flow-field solutions were presented for various section of the blade in the hovering mode.

  • PDF

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (I) - 블레이드 끝단면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (I) - Blade Tip -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.349-356
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the tip of the rotating turbine blade with various incoming flow incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with a mean tip clearance of 2.5% of the blade chord. The incoming flow Reynolds number is $1.5{\times}10^5$ at design condition. To examine the effect of off-design condition, the experiments with various incidence angles ranging between $-15^{\circ}$ and $+7{\circ}$ were conducted. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. The results indicated that the incidence angle strongly affects the behavior of tip leakage flow around the blade tip and consequently plays an important role in determining heat transfer characteristics on the tip. For negative incidence angles, the heat/mass transfer in the upstream region on the tip decreases by up to 20%. On the contrary, for positive incidence angles, much higher heat transfer coefficients are observed even with small increase of incidence angle.