• 제목/요약/키워드: Blade-to-Blade Flow

검색결과 1,078건 처리시간 0.033초

회전 및 유동효과를 고려한 터보기계 블레이드의 진동해석 (Vibration Analysis of a Turbo-Machinery Blade Considering Rotating and Flow Effect)

  • 정규강;신승훈;박희용;김동현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.519-522
    • /
    • 2010
  • 블레이드 구조변형 효과를 고려한 스테이터-로터의 케스케이드 모델의 상호간섭의 평가를 위하여 유체-구조 연계 해석 시스템을 수행하였다. 고정된 스테이트와 회전하는 로터는 상호 간섭 영향이 유동해석에 고려되었다. 또한 정적인 유체-구조 연게해석과 수렴률 증진을 효과적으로 수행하기 위하여 큰 인공감쇠를 가지는 Newmark 시간 적분 기법을 적용하였다. 수치 실험을 통해 탄성축 위치에 따른 구조 변형 효과가 케스케이드 성능에 미치는 영향을 파악하였다. 구조 변형 효과가 고려된 경우 일반적인 강체 블레이드모델에 대한 성능 예측 결과와 다소 차이가 유발될 수 있음을 보였으며 공력 탄성학적 영향을 확인하였다.

  • PDF

축류 송풍기 허브측 불균일 유입유동 현상 및 성능 특성 (Performance Characteristics Due to the Inflow Distortion near Hub in an Axial Flow Fan)

  • 장춘만;최승만;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.663-669
    • /
    • 2005
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, round shape and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. In case of right-angled front shape, axisymmetric distorted inflow is induced by flow separation at the sharp edge of hub-cap, and the characteristics of the inflow depends on the distance between hub-cap and blade leading edge. Flow analysis of the blade passage is peformed by solving the three-dimensional Reynolds-averaged Navier-Stokes equations. numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flowangle. The changed inlet flow angle near the hub invokesa flow separation on the blade surfaces, thus deteriorating the fan efficiency. The effect of the distance between hub-cap and blade leading edge on the efficiency is also discussed.

  • PDF

원심블로어 임펠러 토출 날개 형상에 따른 성능특성 (Performance Characteristics according to the Outlet Impeller Blade Shape of a Centrifugal Blower)

  • 이종성;전현준;장춘만
    • 한국유체기계학회 논문집
    • /
    • 제16권6호
    • /
    • pp.12-18
    • /
    • 2013
  • This paper presents the performance characteristics of a centrifugal blower using the design parameters of an impeller blade. Two design variables, the bending length from the blade trailing edge and bending angles of an impeller blade, are introduced to analyze the effects on the blower performance. Three-dimensional Navier-Stokes equations with shear stress transport turbulence model are introduced to analyze the performance and internal flow of the blower. Relatively good agreement between experimental measurements and numerical simulation at the design flow condition is obtained. Throughout present study, it is known that pressure increases as the bending length from the trailing edge and bending angle increase while efficiency decreases. But efficiency is decreased. Detailed flow field inside the centrifugal blower is also analyzed and compared.

최적화 방법에 따른 축류압축기의 효율평가 (Evaluation of Efficiency by Applying Different Optimization Method for Axial Compressor)

  • 장춘만;;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.543-544
    • /
    • 2006
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using three-dimensional Navier-Stokes analysis and three different surrogate models: i.e.., Response Surface Method(RSM), Kriging Method, and Radial Basis Function(RBF). Three design variables of blade sweep, lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor blade, the adiabatic efficiency is increased for the three different surrogate models. Detailed flow characteristics at the optimal blade shape obtained by different optimization method are drawn and discussed.

  • PDF

원심압축기의 성능에 미치는 형상변수들의 영향에 대한 수치적 연구 (Numerical Study on Effects of Geometrical Variables on Performance of A Centrifugal Compressor)

  • 김진혁;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.152-155
    • /
    • 2008
  • In this paper, the effect of modification of geometric variables on the performance of a centrifugal compressor blade has been studied numerically. The compressor contains six main blades and six splitter blades. Reynolds averaged Navier-Stokes (RANS) equations with shear stress turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The design variables from blade lean angle at tip and middle of the blade have been modified. The isentropic blade efficiency and pressure have been predicted with the variation of the variables. Frozen rotor simulation is performed and adiabatic wall condition has been used. One of the six blades of compressor has been used for simulation to reduce the computational load. Optimum number of meshes has been selected by grid-dependency test, and this is used for all the simulations with changing geometric variables. The detailed flow analysis results have been reported as well as the effects of the variables.

  • PDF

공간축소형 댐퍼의 날개개도에 따른 풍량변화 특성평가 (Characteristics of Wind Flow Variation with Wing Development of Space-Reduced Damper)

  • 백근욱;백남도;이명원;강명창
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.113-120
    • /
    • 2021
  • An experimental device was designed to control the opening of a damper via operating the folding blade drive of the device and to control the amount of air flowing through the damper. In addition, an inverter was installed in the blower to control its fan rotation speed and hence the amount of air flowing through the damper. An experimental study was conducted on the opening of the folding blade damper and changes in the rotational speed of the blower. From the results, the theoretical air volume of the folding blade damper and experimental air volume were observed to be in good agreement within an error range of ±3%. As the mass flow rate of the air passing through the folding blade damper increases proportionally with the changes in damper opening and fan rotation speed, the performance of the damper can be controlled proportionally. The mass flow rate was also observed to increase linearly; therefore, the mass flow rate of the air passing through the folding blade damper increases proportionally with changes in the rotation speed of the blower, such that the performance of the damper is proportional to a constant air volume even with varying rotation speeds of the blower.

Effect of Blade Leading Edge Sweep on the Performance of a High Pressure Centrifugal Compressor Impeller

  • Wang, Hongliang;Xi, Guang
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.823-827
    • /
    • 2008
  • The effects of blade leading edge sweep on both the aerodynamic performance and the structure stress of a high pressure centrifugal compressor impeller are numerically investigated. Changes in the flow structure occur as a result of the effect of leading edge sweep on the loading distribution in the tip region. The flow separation is avoided by introducing a sweep of the main blade leading edge and the strength of shock is reduced at the same time. Backswept of the leading edge is found to be beneficial to the impeller performance improving. On the other hand, the structural analysis indicated that high rotating speed of the impeller will cause substantial high bending stresses and radial deflections of the blade. Studies have shown that it is possible to control the stress distribution along the tip and root of the blade by slight adjustments to the sweep angle of the leading edge. These adjustments may be used to design the impeller with lower blade root stress distribution without aerodynamics performance penalty.

  • PDF

유한요소해석을 이용한 가스터빈 압축기 블레이드 피로균열 해석 (Investigation of the High Cycle Fatigue Crack of the Gas Turbine Compressor Blade Using Finite Element Analysis)

  • 윤완노;김준성
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.107-112
    • /
    • 2010
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Large scale gas turbine compressor is designed as multi-stage axial flow and the blade is fan-type which is thick and wide. Recently radial cracking happens occasionally at the compressor blade tip of large scale gas turbine. So, FEM was performed on the compressor blade and vibration modes and dynamic stresses were analyzed. According to the analysis, 9th natural frequency mode of the blade, which is 2 strip mode, is near the vane passing frequency by the vane located at the upstream of the blade.

축류팬에서의 광대역소음 발생에 대한 실험적 연구 (An Experimental study on the Broadband Noise Generation in Axial Flow Fan)

  • 이욱;최종수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.91-96
    • /
    • 1998
  • The broadband noise generated aerodynamically from a two-bladed axial flow fan has been measured and compared to the result of a self-noise prediction method. The prediction scheme is based on the experimental data set acquired from a series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections. For low blade loading case the comparison showed a reasonably good agreement, but as the loading becomes larger the empirical formula overpredict the sound pressure level at high frequency range. This is probably due to the use of stationary wing data for the prediction of rotating blade case, which will be quite different in their vortex strength at the blade tip.

  • PDF

블레이드 팁 형상이 터빈 캐스케이드 전압 손실에 미치는 영향에 대한 연구 (Effect of Turbine Blade tip shape on the Total Pressure Loss of a Turbine Cascade)

  • 이기선;박승덕;노영철;김학봉;곽재수;전용민
    • 한국유체기계학회 논문집
    • /
    • 제12권2호
    • /
    • pp.39-45
    • /
    • 2009
  • Leakage flow through turbine blade tip gap causes strong leakage vortex near the blade suction side and induces large aerodynamic losses. In this study, the conventional plane tip and various squealer tip blades were tested in a linear cascade in order to measure the effect of the tip shape on the total pressure loss. Three tip gap clearances of 0.6%, 1.3%, and 2.0% of blade span were tested. Flow measurement was conducted at one chord downstream from the trailing edge with a five-hole probe. Results showed that the leakage vortex was stronger than passage vortex and the mass averaged overall total pressure loss through the cascade was the lowest for suction side blade tip case. For all tested cases, the area averaged overall total pressure loss was increased as the tip clearance increased.