• Title/Summary/Keyword: Blade-To-Blade

Search Result 3,209, Processing Time 0.027 seconds

Structural Analysis and Design of Small Wind Turbine Blade (소형풍력발전기용 블레이드의 구조해석 및 설계)

  • Choi, Du-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.85-91
    • /
    • 2015
  • Wind turbine blades represent a key component of wind turbines, which extract energy from the wind. In the present study, the structural design of a small wind turbine blade is undertaken using a numerical analysis. The reliability of numerical results is verified through a comparison with the full-scale structural test data of a current blade. To modify the blade design, the blade was divided into several sections and the effect of the thickness of each section was investigated in a numerical analysis. Finally, the modified blade was designed with a lightweight and high-strength.

Equivalent Structural Modeling of Wind Turbine Rotor Blade (풍력발전기 로터 블레이드의 등가 구조모델 수립)

  • Park, Young-Geun;Hwang, Jai-Hyuk;Kim, Seok-Woo;Jang, Moon-Seok;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2006
  • The wind turbine rotor blade is faced with various aeroelastic problem as rotor blades become bigger and lighter by the use the composite material. The aeroelastic analysis of a wind turbine rotor blade requires its aerodynamic model and structural model. For effective aeroelastic analysis, it is required the simple and effective structural model of the blade. In the present study, we introduce the effective equivalent structural modeling of the blade for aeroelastic analysis. The equivalent beam model of the composite blade based on its 3D finite element model is established. The free vibration analysis shows that the equivalent beam model of the blade is equivalent to its 3D finite element model.

  • PDF

Generation of wind turbine blade surface defect dataset based on StyleGAN3 and PBGMs

  • W.R. Li;W.H. Zhao;T.T. Wang;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In recent years, with the vigorous development of visual algorithms, a large amount of research has been conducted on blade surface defect detection methods represented by deep learning. Detection methods based on deep learning models must rely on a large and rich dataset. However, the geographical location and working environment of wind turbines makes it difficult to effectively capture images of blade surface defects, which inevitably hinders visual detection. In response to the challenge of collecting a dataset for surface defects that are difficult to obtain, a multi-class blade surface defect generation method based on the StyleGAN3 (Style Generative Adversarial Networks 3) deep learning model and PBGMs (Physics-Based Graphics Models) method has been proposed. Firstly, a small number of real blade surface defect datasets are trained using the adversarial neural network of the StyleGAN3 deep learning model to generate a large number of high-resolution blade surface defect images. Secondly, the generated images are processed through Matting and Resize operations to create defect foreground images. The blade background images produced using PBGM technology are randomly fused, resulting in a diverse and high-resolution blade surface defect dataset with multiple types of backgrounds. Finally, experimental validation has proven that the adoption of this method can generate images with defect characteristics and high resolution, achieving a proportion of over 98.5%. Additionally, utilizing the EISeg annotation method significantly reduces the annotation time to just 1/7 of the time required for traditional methods. These generated images and annotated data of blade surface defects provide robust support for the detection of blade surface defects.

Rotating Frequency Analysis of a Helicopter Rotor Blade with Swpt Tips (후퇴각 날개끝이 있는 헬리콥터 로터깃의 회전주파수 해석)

  • ;Yang, Wei Dong
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.229-239
    • /
    • 2000
  • To reduce the drag rise on the advancing helicopter rotor blade tips, the tip of the blade is modified to have sweep, anhedral and pretwist. The equations of motion of rotor blade with these tip angles were derived using Hamilton principle, programmed using FORTRAN and named as ARMDAS(Advanced Rotorcraft Multidisplinary Design and Analysis System). Rotating frequency analysis of rotor blades with swept tipe was performed that is necessary in conceptual and preliminary design phases of the helicopter design. Vibration analysis of non-rotating blades was also accomplished and compared with MSC/NASTRAN resutls for the basis of comparison with the vibration test data. The rotating frequency analysis of blades with an actual rotor blade data was also performed to verify coded program and to check the possibility of a resonance of an actual rotor blade at the specific rotating speed.

  • PDF

Flow Analysis on a 1kW-class Horizontal Axis Wind Turbine Blade for Hybrid Power Generation System (복합발전 적용을 위한 1kW급 수평축 풍력터빈 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Choi, Young-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • This study is to develop a 1kW-class small wind turbine blade which will be applicable to relatively low speed regions. For this blade, a high efficiency wind turbine blade is designed and a light and low cost composite structure blade is adopted considering fatigue life. In this study, shape design of 1kW-class small wind turbine blade for hybrid power generation system is carried out by BEMT(blade element momentum theory). X-FOIL open software was used to acquire lift and drag coefficients of the 2D airfoils used in power prediction procedure. Moreover, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  • PDF

Design Method for the Darrieus Type Wind Turbine (다리우스형 풍력블레이드의 설계 방법)

  • Lee, Jang-Ho;Du, Lian
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1465-1469
    • /
    • 2009
  • Darrieus wind turbine blade is one of the vertical wind power system in which the lift of blade is used. In the calculation of wind power for the type of that, the multiple streamtubes method is known as an effective method. But it has big difference in the region of higher tip speed ratio because the incoming air velocity is used in the calculation of lift. The incoming air velocity is reduced from inlet to outlet continually by transferring energy to the wind blade. In this study, the air velocity on the blade, which is called blade velocity, is obtained with newly developed algorithm and used to determine the lift. And it is verified that applying blade velocity on the lift calculation cause the power prediction to improve dramatically in the region of higher tip speed ratio.

  • PDF

CHARACTERISTICS OF MINIMUM TILLAGE BY ROTARY TILLER FOR DIRECT RICE SEEDER

  • Park, S. H.;Lee, K. S.;Lee, C. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.154-161
    • /
    • 2000
  • A series of soil bin experiment was carried to investigate the effects of rotary blade shape, rotational direction of rotary blade, number of blade and soil cutting disk blade on the characteristics of partial tillage. Among the three types of rotary blades, rotary blade for cultivator was considered to be proper for partial tillage of direct seeder considering the torque requirements and ratio of soil breaking. There is no need to attach so many blades to the rotary shaft. Four rotary blades were enough for efficient partial tillage by rotary tiller. Though soil cutting disk blade assisted the better formation of seedbed furrow, attachment of the soil cutting disk blade increased torque requirements.

  • PDF

Design Optimization of QTP-UAV Prop-Rotor Blade Using ModelCenter (ModelCenter를 이용한 QTP-UAV 프롭로터 블레이드 형상 최적설계)

  • Kang, Hee Jung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • Blade design optimization of QTP-UAV prop-rotor was conducted using ModelCenter(R). Performance efficiency of the blade in hover and forward flight were adopted as the multi-objective function. Required power and pitch link force applied to constraint in each flight mode and limited lower than the value of the baseline blade. Design variables of root chord length of the blade, taper ratio, twist slope, twist angle at 0.5R of the blade, anhedral angle, parabolic coefficient of a tip shape and location of airfoil were used to generate the blade planform. CAMRAD-II, the comprehensive analysis program of rotorcraft, was used for performance analysis of prop-rotor blade in design process. Performance of the optimized blade improved 1.6% of figure of merit in hover and 13.6% of propulsive efficiency in forward flight. Pitch link force also reduced approximately 30% less than that of the baseline blade.

Heat/Mass Transfer Characteristics on Stationary Turbine Blade and Shroud in a Low Speed Annular Cascade (I) - Near-tip Blade Surface - (환형 캐스케이드 내 고정된 터빈 블레이드 및 슈라우드에서의 열/물질전달 특성 (I) - 블레이드 끝단 인접 표면 -)

  • Rhee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.485-494
    • /
    • 2005
  • For the extensive investigation of local heat/mass transfer on the near-tip surface of turbine blade, experiments were conducted in a low speed stationary annular cascade. The turbine test section has a single stage composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has flat tip geometry and the mean tip clearance is about $2.5{\%}$ of the blade chord. Detailed mass transfer coefficient on the blade near-tip surface was obtained using a naphthalene sublimation technique. The inlet flow Reynolds number based on chord length and incoming flow velocity is changed from $1.0{\times}10^{5}\;to\;2.3{\times}10^{5}.$ Extremely complex heat transfer characteristics are observed on the blade surface due, to complicated flow patterns, such as flow acceleration, laminarization, transition, separation bubble and tip leakage flow. Especially, the suction side surface of the blade has higher heat/mass transfer coefficients and more complex distribution than the pressure side surface, which is related to the leakage flow. For all the tested Reynolds numbers, the heat/mass transfer characteristics on the turbine blade are the similar. The overall averaged $Sh_{c}$ values are proportional to $Re_{c}^{0.5}$ on the stagnation region and the laminar flow region such as the pressure side surface. However, since the flow is fully turbulent in the near-tip region, the heat/mass transfer coefficients are proportional to $Re_{c}^{0.8}.$

Geometrical Analysis of a Torque Converter (토크 컨버터의 형상 분석)

  • 임원석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.197-212
    • /
    • 1997
  • The performance of a torque converter can be expressed by the performance parameters such as flow radius and flow angle, on the mean flow path. The geometric analysis of the torque converter is required to determine these parameters for the modeling of the torque converter. In general, the blade shape is depicted by three dimensional data at the mid-surface of blade or those of the pressure and suction side. To generate three dimensional model of the blade using the data mentioned above, a consistent data format and a shape generation algorithm are required. This paper presents a useful consistent data format of the blades and an algorithm for the geometrical shape generation. By the geometric analysis program to which the shape generation algorithm is embedded, the variation of blade angles in rotating element analyzed. Then finally, the analyzed results of geometric profile of a blade are compared with those of the blade design principle, so called forced vortex theorem.

  • PDF