• Title/Summary/Keyword: Blade-To-Blade

Search Result 3,209, Processing Time 0.027 seconds

A Study on Fracture Mechanism of Torsion-Mounted Type Turbine Blade (비틀림 마운트형 터빈 블레이드의 파괴기구에 관한 연구)

  • Hong, Soon-Hyeok;Lee, Dong-Woo;Jang, Deuk-Yul;Cho, Seoks-Woo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.585-590
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

A Study on Failure Analysis of Turbine Blade Using Surface Roughness and FEM (표면거칠기와 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;이선봉;조석수;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.170-177
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

A Turbine-Blade-Balancing Problem with Some Locking Blades (고정형 블레이드가 있는 터빈의 블레이드 균형화 문제)

  • Choi, Won-Joon
    • IE interfaces
    • /
    • v.14 no.2
    • /
    • pp.140-147
    • /
    • 2001
  • In the turbine-blade manufacturing industry, turbine-blades are machined and then are assembled to form a circular roll of blades. The roll of blades should be balanced as much as possible, since otherwise the efficiency of the turbine generator might be damaged. A locking blade is a blade whose location is fixed and a non-locking blade is a blade whose location can be freely changed. In this paper, we study methods for balancing the weights of the rotating blades for a turbine where some blades are locking blades. The turbine-blade balancing problem is formulated into a mixed-integer programming problem, which turns out to be NP-hard. A heuristic method based on the number partitioning algorithm is developed and the computational experiments show very promising results.

  • PDF

A Blade-Abrading Method for Surface Pretreatment of Mg Alloys

  • Moon, Sungmo
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.5
    • /
    • pp.194-198
    • /
    • 2015
  • A blade-abrading method was newly developed for the preparation of clean Mg alloy surface and reported for the first time in detail in this paper. The blade-abrading method includes abrading of the Mg alloy surface with a sharp blade or knife to remove the surface oxide and contaminants on the skin of Mg alloys mechanically, thereby providing very clean surface of Mg alloys. The clean surface prepared by the blade-abrading method in the air was found to be covered with thin and dense air-formed oxide films. Based on the experimental results obtained in this work, it is concluded that the newly developed blade-abrading technique is a very simple and useful pretreatment method which can provide clean and well-defined surface for the following surface treatments.

Effect of Vortex Generator in Intake Pipe on the Moisture Concentration Distributions and Combustion Performance in a CI Engine (흡기관내 와류생성기가 압축착화엔진의 수분 농도 분포 및 연소성능 향상에 미치는 영향)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.169-174
    • /
    • 2018
  • In this work, optimization of blade shape for the improvement of mixture formation and vortex of intake port was performed by numerically, and the combustion performance of CI engine with optimized blade shape was investigated. To achieve this, 3 types of blade shape were studied under the different air flow mass conditions and the numerical results were investigated in terms of humidification water, moisture concentration, and velocity distributions. Evaporated liquid mass was also compared under various test conditions to reveal the turbulent intensity in an intake port. It was observed that the optimized blade shape can improve the humidification water, moisture concentration, and velocity distributions of intake port inside. The evaporated liquid mass was also increased under the conditions with blade. Especially, low NOx emissions was observed with optimized blade condition.

A study on the deviation angle of the rotating blade row in an axial- flow compressor (軸流壓縮機 回轉翼列의 流出偏差角에 관한 硏究)

  • 조강래;방영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1407-1414
    • /
    • 1988
  • Deviation angles are predicted by numerical calculation of three-dimensional compressible flow through the rotating blade row in axial flow compressor. Three-dimensional flow fields are analyzed by the quasi three-dimensional combination of blade-to blade surfaces and hub-to shroud stream surfaces and calculated by the finite element method in the cyclic calculation of both stream surfaces. In the blade-to blade calculations the method of boundary stream line correction is used and in the hub-to shroud calculations the loss effects due to viscous flow are included. The computational results are compared with the available experimental one. It is shown that the computational results from blade-to-blade flow calculation are correct for incompressible, compressible low subsonic and high subsonic flow at the inlet, and the loss effects on the deviation angle can be neglected in the range of the subsonic flow less than the critical Mach number for the axisymmetric flow and even for 3-D non-axisymmetric flow with loss. And it is found that the present results are better agreed with the experimental data than Lieblein's one.

Design investigation of the stress reduction of bolted joint connection components in a large wind turbine blade (대형 풍력발전기 블레이드의 볼트체결부 응력감소를 위한 설계연구)

  • Kwang Tae Ha;June Hur;Jae-Ho Jeong
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.42-49
    • /
    • 2022
  • Today, the power capacity of a wind turbine and the size of a blade is increasing to capture more wind resources, reduce the number of wind turbines on a wind farm, and reduce the cost of energy. As the blade size becomes larger, attention is being paid to the structural integrity of the blade root connection due to the heavy gravitational load effect and increased aerodynamic loads on the large blade, which could cause catastrophic failure of the blade. Therefore, the secure bolted joint connection of the blade to the hub is very important. In this paper, attention was given to the stress concentration factor (SCF) at the first thread between the M42 bolt and nut. The effect of various design parameters on the stress concentration factor was investigated, which included nut type, nut height, and reduced shank bolt. From a close design investigation of the numerical results, it turned out that the use of a reduced shank bolt resulted in the largest reduction of the stress concentration factor by 40 %, and the round nut type also reduced the SCF by 10 %, which will be beneficial to large wind turbine blades over 100 meters.

Automatic measurement of blade width using image processing techniques (영상처리에 의한 연삭면 너비 계측)

  • 김선일;박종구;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.799-804
    • /
    • 1990
  • In the blade grinding process, Blade image is captured. It is captured in the environment with vibration, using monochrome CCD camera with high speed electronic shutter. The image is preprocessed using LoG filter and zero crossing. We used Hough transformation to detect straight lines from the preprocessed image. From the equations of detected lines, we calculated width between lines caused by grinders. This paper proposes automatic measurement of blade width to automate the process control of blade grinding line.

  • PDF

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

A Stress Analysis of the Rotary Blade by Freezing Photoelastic Method (동결(凍結) 광탄성법(光彈性法)에 의한 로터리 경운날의 응력해석(應力解析))

  • Choi, S.I.;Kim, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.211-218
    • /
    • 1991
  • In this study, the break of the rotary blade which is occured from a stress concentration of the inside of blade by the outside impulsive load, is analyzed to 3-dimension used by the Freezing Photoelastic Method. These results are as follows. 1. The bending and compression stress are the greatest at the location of blade case. 2. The section area of 3cm-location from the blade case is the smallest, therefore, there are breaked 58% of all at this location and are proofed to the most danger section 3. The section area which by stress concentration of 3cm-location from blade case is caused by the production of blade, and it was higher danger of break than another location's. 4. In the location of 6cm and 9cm from the blade case, the bending stress has received a little and the section area has larger than another's, so it is not almost possible that the break at that location 5. In order to prevent of break, the external part which has contacted soil have to made tender for receiving a little stress and the internal part which received a large stress have to strengthen.

  • PDF