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In the turbine-blade manufacruring industry, turbine-blades are machined and then are assembled to form
a circular roll of blades. The roll of blades should be balanced as much as possible, since otherwise the
efficiency of the turbine generator might be damaged. A locking blade is a blade whose location is fixed
and a non-locking blade is a blade whose location can be freely changed. In this paper, we study methods
for balancing the weights of the rotating blades for a turbine where some blades are locking blades. The
turbine-blade balancing problem is formulated into a mixed-integer programming problem, which turns
out to be NP-hard. A heuristic method based on the number partitioning algorithm is developed and che
computational experiments show very promising results.

1. Introduction

A steam turbine may be defined as a form of the heat
engine in which the energy of the steam is trans-
formed into kinetic energy by means of expansion
through nozzles, and the kinetic energy of the
resulting jet is in turn converted inro force doing
work on rings of blades mounted on a rotating pare,
In the rcurbine-blade manufacturing industry,
turbine-blades are machined and then arc assembled
to form a circular roll of blades, as illustrated in
<Figure 12>, The roll of blades should be balanced as

much as possible, since otherwise the efficiency of the
turbine generator might be damaged. However, the
blades to be assembled into the same roll are not
normally idenrical in weights and lengths, which
makes the balancing problem tedious and difficulr.
And in some situations, some blades are fixed to
pre-specified locations over the rotation axis, A blade
is called either a locking blade or a non-Jocking blade.
A Jocking blade is a blade whose location is fixed and
a non-locking blade is a blade whose location can be
freely changed. Even though the number of locking
blades is normally just a small portion of the whole
sct of blades, even a single blade can affect the qualicy
of the balancing of the curbine blades, which makes

Figure 1. A Turbine and Turbine Blades.
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the balancing problem an important issue.

In this paper, we study methods for balancing the
weights of the rotating blades for a turbine where
some blades are locking blades, In Section 2, we
formulate this blade-balancing problem into a mixed-
integer programming problem. In Section 3, we
review the literature on topics of the turbine blade
balancing problem. In Section 4, we propose a
heuristic method for solving the blade-balancing
problem, followed by the exposition of the computa-
tional experiences in Section 3.

2. Problem formulation

Suppose we are given a set of blades whose weights
are known. The problem which we should solve is to
determine the Jocation of each blade around the
rotor axis so as to minimize the residial inbalance (its
definition will be grven later) in weight distribution,
A blade s either a locking blade or a non-locking
blade. A locking blade is a blade whose location is
fixed and a non-locking blade is a blade whose
location can be freely changed. As in Amiouny ¢ 4/.
(2000), we assume that the centers of gravity of all
blades are at the same distance » from the center of
the rotor axis. We define the following notation:

n : total mmber of blades, equivalently total number
of locations

i blade index (7=1, 2, ..., »)

i: location index G =1, 2, ..., »n)

w; : weight of blade .

v distance between the center of gravity of a blade
and the center of rotor axis.

F: the set of the locking blades.

For notational simplicity, we assume that a locking
blade / in F is fixed at location ;. Then F also stands
for the set of locations where the locking blades are
positioned.

The balancing problem with some locking blades
can be stated as follows: Given #» blades with weight
wi, the set of locking blades £, and a circle of radius
» with # equally spaced locations on its periphery,
find an assignment of the non-locking blades to the
locations that minimizes residual unbalance about
the center. The residual unbalance is the magnitude
of the vector sum of the moments created by the
individual blades (non-locking blades and locking
blades) about the center.

Without loss of gencrality, we assume that 5 is
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(Colored blades are locking blades.)
Figure 2. Blade Balancing Problem.

even. Tor convenience, we assume a coordinate
system in which the origin is at the center of the
circle and the positive x axis goes through one of the
n locations as illuscrated in <Figure 2>. The
locations are numbered in counterclockwise order
starting with the one coincident with the positive x
axis. So, the coordinates of location 7 are
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The decision variables x;; are defined as

_ { | {f blade i is assigned to location |

i 0 othervise

Let C;= Ww; * ¥COS
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dy= w; - rsm( .

Now, for any solution x we can determine the
moment vector (m,, m,) of the moment weight as

Wy =

i
Wy, = 2

Then the balancing problem can be stated as follows :

Minimize  m> + m (Eq. 1)
subject to

My = El ;i: Cij X (Eq. 2)

mwy = i:l ;ii dix; (Eq. 3)

gxn: 1. 7/=1,2,.n, (Eq. 4)

ixi}':l. i=1,2,.n, (Eq. »

=1t
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(Eq. 6)
x;=0,1 (Eq. 7)
(Eq. 1) with (Eq. 2) and (Eq. 3} defines the residual
unbalance. (Eq. 4) and (Eq. 5) mean the assignment
constraints that a blade can be assigned to a single
location. And (Eq. 6) stands for the constraints of the
locking blades.

It is known that the balancing problem with F =
¢ is NP-hard (Mason and Rdnngvist (1997)) and
thus the balancing problem with a general form of F
is NP-hard.

3. Literature Review

To the knowledge of the author, the turbine blade
balancing problem with some locking blades has not
been studied in the open literature, So far the turbine
blade balancing problem without locking blades has
been studicd by several authors. Mosevich(1986)
presented an algorithm which consisted of selecting
the best of a large number of randomly generared
solutions, Laporte and Mercure (1988) modeled the
problem as a quadratic assighment problem and
presented a solution procedure based on Or’s TSP
heuristic which outperformed thar of Mosevich. Fachi
and Ginjupalli (1993) also modeled the problem as a
quadratic assignment problem and two families of
heuristics for ic. The firsc family of heuristics is based
on the Placement Heuristic, which places the blades
in order of weight the heaviest blade first choosing
for each blade the available location that brings the
resulting center of gravity as close as possible to the
center of roror axis. The second family of heuristics,
based on a divide-and conquer approach called the
Rotational Heunstic, which divides the blades into
cqual-sized subsets, finds good sequences for the
smaller problems of balancing with only the blades
in each subset and then interleaves the sequences.
Mason and Ronnquist(1997) tested several local
search techniques including pairwise interchange and
three-way interchange algorithms. They found that
pairwise interchange heuristic was most efficient.
They also proposed a Lagrangean relaxation approach
but the results were not satisfactory.

Amiouny, Bartholdi and Vande Vate (2000) developed
several constructive heuristics for the problem of
which two seem to dominate, Ordinal Pairing and
Greedy Pairing. Both algorithms begin by sorting
the blades from heaviest to lightest, Next after

forming the pairs of consecutive blades in the sorted
list, sort the pairs in the descending order of the
difference in weights in a pair. Then pairs in the
finally sorted list are placed across from each other
on the rotor axis. The two algorichms differ as co
how the locations of each pair of blades are deter-
mined. Ordinal pairing places the blades in a fixed
pattern. Greedy pairing places the blades by a
greedy algorithm. For each pair, all possible open
positions on the circle are examined, and the position
which yields the center of gravity closest to the
center of the circle is chosen. Choi et 2/.(1999)
presented several heuristic methods for che turbine
blade balancing problem formulated as a minimax
unbalance problem. Storer (1999) proposed a heuristic
which uses an embedded number partitioning algorithm,
which turned out to outperform the existing heuristics.
Choi (2000) developed an iterative version of Storer’s
heuristic and found that his heuristic improved the
solution quality substantially.

4. Heursitics

It this section, we propose two heuristic methods for
the balancing problem: one is based on the number
partirioning algorithm and the other is a pairwise
interchange heuristic. The first heuristic extends the
Storer's cmbedded number partitioning algorichm to
the case of the locking blades. For expositional
simplicity, we begin with brief explanation of the
Storer’s embedded number partitioning algorithm.

Storer’s embedded number partitioning algorithm:

Storer(1999) proposed a heuristic which uses an
embedded number partitioning algorithm. Initially,
the blades are placed in random locations on the
circle. Then two perpendicular axes of symmetry as
shown in <Figure 3> are chosen. Next the center of
gravity around “the X-axis” is balanced, and then
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Figure 3. Perpendicular Axes of Symmetry(Storer (1999)).
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Figure 5. Calculation of d Values(Storer(1999).

around “the Y-axis.”

To balance the center of mass around an axis, pairs
of weights which are symmetric with respect to the
axis as shown in <Figure 4> are considered, Next a
single number d; for each pair of weights is created (i
=1 to n/2) as illustrated in <Figure 5>>. More spec-
ifically speaking, we get 4; as follows;

= difference in weights of the pair Xsin
(difference in angles of the pair / 2).

This number ¢ is the center of gravity of the pair
with respect to the axis of symmetry. Next a number
partitioning algorithm (whose description will be
given below) is applied to the set {|a|,
du| } of the pairwise center of mass. The result of
partitioning is two sets of pairs, The final step is to
arbicrarily select one of the two sets of pairs, and
interchange the weights of each pair in that set. The
result will be that the center of gravity with respect
to the axis of symmetry will be nearly balanced and
equal to the objective function found by the number
partitioning algorithm. The final step of the algorithm
is to balance the center of graviry with respect to the
second perpendicular (V) axis of symmetry. The
same algorithm as for the X-axis is applied. A key
observation is that applying cthe algorithm to
produce balance around the ¥-axis does not affect
the balance around the X-axis in the first step.

Partially pre-fixed number partitioning problem:

The number partitioning problem is defined as
follows(Karmarkar and Karp (1982)) : Parrition a set
of numbers into two mutually exclusive sets minimizing
the absolute difference of the sum of the two sets.
Letting a; for i1=1, -, # represent » numbers to be
partitioned, and S and §” represent the two sets after
partitioning, then the problem can be stated as

Z‘,a, 25 ail.

Min |
=

Among the algorithms developed for the number
partitioning problem, the differencing algorithm
proposed by Karmarkar and Karp (1982) is known
to be simple and elegant. Letting o, = , Storer
applied a version of Karmarkar and Karp's algorithm
to the turbine balancing problem.

We define the partially pre-fixed number parti-
tioning problem by a number partitioning problem
where for a subset of the numbers cheir belonging
sides are pre-specified and cannot be changed.

Example: Suppose that we need partition the
numbers in dche set {1, 2, 5, 10, 16, 25, 40, 56, 100}
under the restriccion that 2,10} and {40} must
belong to the different sides.

We can get a solution to the parcially pre-fixed
number particioning problem by a simple modifi-
cation of the algorithm for the number partitioning
problem. We first sum up the numbers to be pre-
fixed for each side and then create an artificial
number whose value is che difference between the
two sums. Next, we remove the pre-fixed numbers
from the number set and insert the artificial number
into the number set. Then we apply the number
partitioning algorithm to the resulting number set.
In this example, we create 40— (2+ 10)=28, remove
2, 10, 40 and insert 28. And we apply the
Karmarkar and Karp's algorichm ro {1, 5, 16, 25,
28, 56, 100} and we get the following partition:

{16, 100} & 11, 5, 25, 28, 56}

Then we plug the pre-fixed numbers in the
partition by replacing the artificial number with the
pre-fixed numbers of the heavier sum and inserting
the pre-fixed numbers of the lighcer sum into the
opposite side of the partition. [n this example, we
plug the original numbers 2, 10, 40 by replacing 28
with {40} and inserting {2, 10} into the opposite
side. Thus we get che final particion
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{2, 10, 16, 100} & {1, 5, 25, 40, 56}.

Locking blades wversion of Storer's embedded
number partitioning algorithm:

We can extend the Storer's blade balancing
heuristic to the case of the blade balancing problem
with some locking blades. Suppose we are given an
mitial placement of n blades, Then with respect to
the current axis, we get che values of {d, &, **,
durey. Suppose there are £ & s which are associated
with the fixed blades. That is, either one or two
blades in such £ pairs are locking blades. Let us call
these ;s by the locking differences. Then we sum up
k d;sllet's denote the sum by ¢< ) and merge them
into one artificial difference with che value <. Next,
we remove the % locking differences from the
number set and insert the artificial difference into the
number set. Then we apply the Karmarkar nd
Karp's number-partitioning algorithm to the »/2— %
|d:|s and |d<|. After getting a partition of the
differences, we place the blades associated with
non-locking differences as follows. Suppose that the
partition has the form { | x|, || for ieSi}& {| 4]
for ;=5,} where S, and $» constirute the index set of
the non-locking differences. If the value dy is positive,
we place the heavier blades (the lighter blades)
associated with non-locking differences 4 for re Sy
on the side “above”("below™) the axis and reversely
for non-locking differences 4 for ie Su. If the value ¢v
is negative, we place the heavier blades(the lighter
blades) associated with non-locking differences d; for
;=8 on the side “below” (“above™) the axis and
reversely for non-locking differences 4, for ic S.

Example: Suppose that we are given an initial
placement where ¢, =3.5, &v = 0.3, &h =4, d =3,
d=—06, & =2, and & =3 and the last three
differences o5, o, and d; are the locking differences
as illustrated tn <Tigure 6a>. Then we get dy = d;
+ ds + d7 = — 1. By applying the Karmarkar and
Karp's number partitioning algorithm to {]d,

7
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Figure 6. llustration of the Locking Blades Version
Algorithm,

\ds |, |d4|, |ds], |dx |}, we get a partition {|a» ],
|d.; , |dg|}& { d1|, |a’_‘_1, |}' as shown in <Figure
6b>. Then since dv=—1 < 0, we place the heavier
blades (the lighter blades) associated with non-
locking differences 4 and for @; on the side below
(above) the axis and reversely for non-locking
differences ¢) and dy. (Or equivalently, we flip two
blades associated with «&; horizontally, leaving the
other blades intact.)

Iterative number partitioning algorithm(locking
blades version):

The algorithm to be proposed begins with an
arbitrary placement with its centroid (W,, W,), and
improves the solution iteracively.

While Storer's algorithm first balances che center
of gravity around “the X -axis”, we select the axis
around which the center of gravity will be balanced.

The axis will be chosen among axes with angles
ﬂ, i=1,2 - n. (We will call the axis with
iz br by Axis /, for i =1,2, -, n.)
We choose the axis which is nearest to the separating
line perpendicular to the line segment linking the
center (0, 0) and the centroid {(W,, W,), as illustrated
in <<Figure 7>,

To balance the center of mass around the selected
axis, pairs of weights which are symmetric with
respect to the axis are considered. Next a single
number o, for each pair of weights is created. This
number o, is the center of gravity of the pair with
respect to the axis of symmetry. Next the locking
blades version of Storer's heuristic is applied to get
the partition. The resulc will be that the center of
gravity with respect to the axis of symmetry will be
nearly balanced.

The rationale behind the selection of the axis is as
follows: The nearer the axis is to the perpendicular
separating line, the larger the unbalance of the

the angle

Figure 7. The Separating Lin¢ Perpendicular to the Line
Segmenc (0, 0)— (W, W.).
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Figure 8. Examples for Illustrating the Relationship

between an Axis and Size of Unbalance.

existing placement with respect to the axis is, since
the unbalance with respect to an axis is cqual to the
distance from the center of gravity to the axis. An
example is shown in <Figure 8>. One can easily see
that the axis of <Figure 8a> is nearer to the
perpendicular  separating line than the axis of
<Figure 8b> and that the unbalance in <Figure
8a> is larger than the unbalance in <Figure 8b>.
However it is normally easier to improve a place-
ment with large unbalance than a placement with
small unbalance.

After applying the above process, we get a2 new
placement and updace the centroid of the placement.
Then we select the axis around which the center of
gravity will be balanced. If the solution was improved
and the newly sclecred axis is different from the
previous axis, then repeac the above process. (For
expository simplicity, we call the newly selected axis
the anchor axis, Initially the anchor axis is the first
selected axis.) Otherwise, we explore other pairings
by selecting an axis next to che current axis and then
repeat the above process. If we fail again to improve
the solution, then we try another untried axis nearest
to the anchor axis. The algorithm stops when all axes
are tried but che ancher axis is not changed.

The proposed algorithm can be stated in a more
tormal way as follows:

First we denote the weight of che blade at location
iby Wi fori=12, #n.
Gert an arbicrary placement { W} with the centroid
(W., W)
Find out the axis nearest to the line segment
linking (0, 0) and (W,, W,), say uxis ¢.
Set successful «— true.
While (successful) do {
Set ¢, — .
Get D[7] forcach i=1,2, =, n/2.

Dli]l =(Wle+id- Wle— i-HD)-sin
(Note: W(k]l= Wik+n]ifk=0)
where sin; = sin(2x /0" (i— 1)+ x/n)
Apply the locking blades version of Scorer's heuri-
stic to { D[]} and update the placement { w,}.
Get the new cencroid (W,, W,) and the necarest
axis .
If the solution was improved and ¢ is different
from ¢, then

Set Alternate «— 1 & Exploreconnt < 0.
Else

If Explorecount = n then
Set Successful < false.

Else
Set Explorecount «— Exploreconnt + 1,
@ = @oua + Alternate » Exploreconnt,
Alternate < Alternate % (—1).

Endif

Endif
}

Here, Explorecownt denotes the counter thar counts
the numbser of axes tried since the last improving axis
and Alternate is a parameter for regulating the axis
number to be explored.

We will call this proposed algorithm the Iterative
Method.

PBuiruvise tnterchange benristic(locking blades version):

Pairwise interchange heuristic was known to be
very efficient method for the turbine blade balancing
problem without a locking blade (Mason and Ronnqvist
(1997)). For verifying the performance of the Irerative
Method, we use the pairwise interchange heuristic of
the locking blades version as a bench mark method.
The pairwise interchange heuristic of the locking
blades version can be stated as follows:

Get an arbitrary placement {W;}.

For each pair of non-locking blades, check if the
residual unbalance can be reduced by switching the
locations of two blades in the pair. If so, switch them
and continue this process. If there is no such pair,
then stop.

We will call this pairwise interchange heuriscic the
Swap Method.

5. Computational Experiences

Following Amiouny, Bartholdi, and Vande Vate



140

(2000), we generated blade weights from a2 Normal
distribution witch a mean of 100 and standard
deviation of 5/3. We generated problems over a
range of sizes from 20 blades to 200 blades. We
tested the problems with the ratio of the number of
locking blades to the toral number of blades(we will
call this ratio the locking ratio from now on) over
0% o 50%. Also following Amiouny, Bartholdi, and
Vande Vate (2000), we assume that the circle radius
is 100 and the objective function is the Euclidean
distance between the center of gravity and the center
of the circle. For each problem size, 1000 instances
were generated.

<Figures 9> and <Figures 10> show the objective
funcrion values averaged over 1,000 problem instances
for each problem size with lterative Method and Swap
Method respectively. Irerative Method improves on
Swap Method by several orders of magnitude in
residual unbalance with a negligible increase in the
running time. For a clear-cut comparison between two
methods, we extract the resules in case of the locking
ratio of 10% from <Figures 9> and <{Figures 10>
and show the comparison in <Figure 11>. For » =
100, Iterative Mechod improves on Swap Method by
more than order of 3. Also from <Figures 9> and
<Figures 10>, we can observe that the quality of a
solution gets better as the number of blades increases
while the quality of a solution gets degraded as the
locking ratio increases.

Figure 10. The Residual Unbalance with Swap Method.

WonJoon Chol

Figure 11. Comparision of [terative Method and
Swap Method for Locking Ratio of 109%.

Figure 13. The Elapsed Time with Swap Method.

<Figures 12> and <Tigures 13> show the elapsed
times in scconds averaged over 1,000 problem
instances for cach problem size on a PC with a
Pentium III 500 MHz processor wich lterative
Method and Swap Method respectively. lrerative
Method takes larger amount of time than Swap
Method. However, the time consumed by Iterative
Methed is not really a problem in che practical sense.
In reality, the typical number of blades in a roll is no
greater than 200 and it is not likely chat the locking
ratio is greater than 109%. For =200 and the
locking ratio = 10%, Iterative Method took just an
average of 0.17 seconds.

In summary, leerative Method shows quite a
significant improvement over Swap method and it is
handy enough for the interactive usc in the real
world since it runs tast on a PC.
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6. Conclusions

In the rurbine-blade manufacturing industry, rurbine-
blade-balancing problem is an important issue, since
poorly-balanced turbines suffer loss in the efficiency
and experience the shortening of the economic life.
In this paper, we have dealt with a turbine-blade-
balancing problem with some locking blades. A
locking blade is a blade whose location is fixed and a
non-locking blade is a blade whose location can be
freely changed. Even though the number of locking
blades is normally just a small portion of the whole
set of blades, even a single blade can affect che
quality of the balancing of the rurbine blades.

We proposed an algorichm based on the number
parditioning heuristic for a turbine-blade balancing
problem with some locking blades. There has been
no rescarch reported in the open literature. It turned
out that the proposed algorithm improved on a
pairwise interchange based heuristic by significanc
orders of magnitude in the residual unbalance with a
negligible increase in the running time. The experi-
mental result that the proposed algorithm gives
much smaller residual unbalance than the pairwise
interchange based heuristic implies that the objective
function surface contains lots of local optimal
solutions and the proposed algorithm is effective in
exploring the feasible region for searching for good
local optimal solutions.
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