• 제목/요약/키워드: Blade Surface

검색결과 614건 처리시간 0.025초

Computational Fluid Dynamics of Cavitating Flow in Mixed Flow Pump with Closed Type Impeller

  • Kobayashi, Katsutoshi;Chiba, Yoshimasa
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권2호
    • /
    • pp.113-121
    • /
    • 2010
  • LES(Large Eddy Simulation) with a cavitation model was performed to calculate an unsteady flow for a mixed flow pump with a closed type impeller. First, the comparison between the numerical and experimental results was done to evaluate a computational accuracy. Second, the torque acting on the blade was calculated by simulation to investigate how the cavitation caused the fluctuation of torque. The absolute pressure around the leading edge on the suction side of blade surface had positive impulsive peaks in both the numerical and experimental results. The simulation showed that those peaks were caused by the cavitaion which contracted and vanished around the leading edge. The absolute pressure was predicted by simulation with -10% error. The absolute pressure around the trailing edge on the suction side of blade surface had no impulsive peaks in both the numerical and experimental results, because the absolute pressure was 100 times higher than the saturated vapor pressure. The simulation results showed that the cavitation was generated around the throat, then contracted and finally vanished. The simulated pump had five throats and cavitation behaviors such as contraction and vanishing around five throats were different from each other. For instance, the cavitations around those five throats were not vanished at the same time. When the cavitation was contracted and finally vanished, the absolute pressure on the blade surface was increased. When the cavitation was contracted around the throat located on the pressure side of blade surface, the pressure became high on the pressure side of blade surface. It caused the 1.4 times higher impulsive peak in the torque than the averaged value. On the other hand, when the cavitation was contracted around the throat located on the suction side of blade surface, the pressure became high on the suction side of blade surface. It caused the 0.4 times lower impulsive peak in the torque than the averaged value. The cavitation around the throat caused the large fluctuation in torque acting on the blade.

베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성 (Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface)

  • 이동호;조형희
    • 한국유체기계학회 논문집
    • /
    • 제8권4호
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.

프로펠러 블레이드의 형상설계 및 CNC 공구경로 생성 (Parametric Shape Design and CNC Tool Path Generation of a Propeller Blade)

  • 정종윤
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.46-59
    • /
    • 1998
  • This paper presents shape design, surface construction, and cutting path generation for the surface of marine ship propeller blades. A propeller blade should be designed to satisfy performance constraints that include operational speed which impacts rotations per minutes, stresses related to deliverable horst power, and the major length of the marine ship which impacts the blade size and shape characteristics. Primary decision variables that affect efficiency in the design of a marine ship propeller blade are the blade diameter and the expanded area ratio. The blade design resulting from these performance constraints typically consists of sculptured surfaces requiring four or five axis contoured machining. In this approach a standard blade geometry description consisting of blade sections with offset nominal points recorded in an offset table is used. From this table the composite Bezier surface geometry of the blade is created. The control vertices of the Hazier surface patches are determined using a chord length fitting procedure from tile offset table data. Cutter contact points and path intervals are calculated to minimize travel distance and production time while maintaining a cusp height within tolerance limits. Long path intervals typically generate short tool paths at the expense of increased however cusp height. Likewise, a minimal tool path results in a shorter production time. Cutting errors including gouging and under-cut, which are common errors in machining sculptured surfaces, are also identified for both convex and concave surfaces. Propeller blade geometry is conducive to gouging. The result is a minimal error free cutting path for machining propeller blades for marine ships.

  • PDF

AFM과 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구 (A Study on Failure Analysis of Turbine Blade using AFM and FEM)

  • 최우성;이동우;홍순혁;조석수;주원식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.489-493
    • /
    • 2000
  • Turbine blade has trouble of cracking at root region. Fracture surface of blade root is surveyed by SEM and AFM to clear relation between fracture mechanical parameter and surface parameter (striation width and surface roughness). Service stress is predicted by maximum height roughness $R_{max}$, on fractured surface and stress analysis on turbine blade. It is to thought that turbine blade is fractured by abnormal condition such as incorrect fittings between pin and pin hole but isn't fractured by normal service conditions such as steam pressure, centrifugal force and torsional force.

  • PDF

풍력발전기 유지보수로봇을 위한 표면 적응 이동 시스템 (A Surface Adaptive Moving Mechanism for Wind Turbine Blade Maintenance Robot)

  • 김병곤;박소라;전민석;전경태;홍대희
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.969-975
    • /
    • 2013
  • As energy shortage is getting more serious, wind energy source is more promoted around the world. Blade is a key component of wind turbine. Local breakages and/or contamination in the blade bring degradation in aerodynamic efficiency and life-time. However, it is not easy and even dangerous for human workers to access the blade for inspection and maintenance since its size is huge and located at high mountains and rough sea, which are windy places. This paper deals with a novel moving mechanism that efficiently carries human workers or robots to the wind turbine blade. The proposed mechanism utilizes flexible tube with pressurized air that rolls and climbs over the blade surface. So, the tube naturally adapts the changing surface of the blade and acts no harm to it. This paper discusses about its concept, detail design, and advantages. The feasibility of the proposed mechanism is proved through experiments prototype.

Diagnostics of nuclear reactor coolant pump in transition process on performance and vortex dynamics under station blackout accident

  • Ye, Daoxing;Lai, Xide;Luo, Yimin;Liu, Anlin
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2183-2195
    • /
    • 2020
  • A mathematical model for the flowrate and rotation speed of RCP during idling was established. The numerical calculation method and dimensionless method were used to analyze the flow, head, torque and pressure and speed changes under idle conditions. Regularity, using the Q criterion vortex identification judgment method combined with surface flow spectrum morphology analysis to diagnose the vortex dynamic characteristics on RCP blade. On impeller blade, there is two oscillations in the pressure ratio on pressure surface in blade outlet region. The velocity on the suction surface is two times more oscillating than the inlet of blade, and there is an intersection with the velocity ratio curve on pressure surface. On blade of guide vane, the pressure ratio increases along the inlet to outlet direction, and the speed ratio decreases with the increase of idle time. There is a vortex that rotates counterclockwise on the suction surface, and the streamline on the suction surface of blade is subjected to the entrainment and blocking action of the vortex creates a large reverse flow in the main flow region. There are two vortices at the outlet of guide vane suction side and the vortices are in opposite directions.

회전하는 터빈 블레이드에서의 열전달 특성 (Detailed Heat Transfer Characteristics on Rotating Turbine Blade)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구 (A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM)

  • 김성웅;홍순혁;전형용;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.

단단 천음속 축류압축기 동익의 Stacking Line 설계 최적화 (Optimal Design for Stacking Line of Rotor Blade in a Single-Stage Transonic Axial Compressor)

  • 장춘만;;김광용
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.7-13
    • /
    • 2006
  • Shape optimization of a rotor blade in a single-stage transonic axial compressor has been performed using a response surface method and three-dimensional Navier-Stokes analysis. Two shape variables of the rotor blade, which are used to define a blade skew, are introduced to increase an adiabatic efficiency. Throughout the shape optimization of a rotor blade, the adiabatic efficiency is increased to about 2.2 percent compared to that of the reference shape of the stator. The increase in efficiency for the optimal shape of the rotor is due to the pressure enhancement, which is mainly caused by moving the separation position on the suction surface of rotor blade to the downstream direction.

반응표면법을 이용한 소형 수직축 풍력터빈 블레이드의 구조 최적화 (Structural Optimization for Small Scale Vertical-Axis Wind Turbine Blade using Response Surface Method)

  • 최찬웅;진지원;강기원
    • 한국유체기계학회 논문집
    • /
    • 제16권4호
    • /
    • pp.22-27
    • /
    • 2013
  • The purpose of this paper is to perform the structural design of the small scale vertical-axis wind turbine (VAWT) blade using a response surface method(RSM). First, the four design factors that have a strong influence on the structural response of blade were selected. Analysis conditions were calculated by using the central composite design(CCD), which is a typical design of experiment for the response surface method(RSM). Also, the significance of the central composite design(CCD) was verified using analysis of variance(ANOVA). The finite element analysis was performed for the selected analytical conditions for the application of response surface method(RSM). Finally, a optimization problem was solved with a objective function of blade weight and a constraint of allowable stress to achieve a optimal structural design of blade.