• Title/Summary/Keyword: Blade Pitch Control

Search Result 84, Processing Time 0.032 seconds

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

Characteristics of Noise Emission from Wind Turbine According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터빈의 방사 소음 특성)

  • Cheong, Cheol-Ung;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.864-871
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and full span pitch control. The main purpose of this paper is to experimentally identify the characteristics of noise emission of wind turbines according to the power regulation types. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines (WT) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence, third-octave band levels and tonality are evaluated for both of WTs. It is observed that equivalent continuous sound pressure levels (ECSPL) of the stall control type of WT continue to increase with increasing wind speed whereas those of the pitch control type of WT show less correlation with wind speed. These observed characteristics are believed to be due to the different airflow patterns around the blade between the stall regulation and the pitch control types of WT; the airflow on the suction side of blade in the stall types of WT are separated at the high wind speed. It is also found that the 1.5 MW WT using the stall control emits lower sound power than 660 kW one using the pitch control at wind speeds below 8m/s, whereas sound power of the former becomes higher than that of the latter in the wind speed over 8m/s. This wind-speed dependence of sound power leads to the very different noise omission characteristics of WTs depending on the seasons because the average wind speed in summer is lower than 8m/s whereas that in summer is higher. Based on these experimental observations, it is proposed that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

Wind Turbine Performance for Eigen Value Change of Pitch Controller (피치제어기의 고유치 변화에 따른 풍력발전기의 성능)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.337-343
    • /
    • 2012
  • NREL(National Renewable Energy Laboratory) Baseline controller conduct using method proposed RISO National Laboratory in Region 3. which designed the blade-pitch control system using a single degree-of-freedom model of the wind turbine. Idealized PID-Controlled rotor-speed error will respond as a second-order system with the natural frequency and damping ratio. RISO proposed specific natural frequency(=0.6 rad/s) and damping ratio(=0.7). If specific Eigen value apply to NREL 5 MW wind turbine, differ with pitch respond for simulation results of RISO report. Variation of specific eigen value investigate performance of NREL 5 MW wind turbine.

  • PDF

Mechanical Design of a 750 kW Direct-drive Wind Turbine Generator System (750kW급 풍력터빈발전기의 기계설계)

  • Sohn, Y. U.;Son, J. B.;Park, I. S.;Kim, Y. C.;Kim, K. R.;Chung, C. W.;Chun, Ch. H.;Ryu, J. Y.;Park, J, I.;Byun, C. J,;Kim, D. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.379-384
    • /
    • 2004
  • A prototype of 750 kW direct-drive wind turbine generator system, KBP-750D is under development in Korea. For the gearless, direct-drive prototype a synchronous generator with permanent magnets has been developed. The upwind 3-blade type machine employs variable speed and pitch control. The operating ranges of wind and rotor speed are 3 to 25 m/s and 9 to 25 rpm, respectively. The tip speed ratio of rotor blade is 7.5, designed for power coefficient 0.47, The blade pitch and torque are controlled with the predefined torque-speed curve according to the conditions of wind and public electric grid. This paper describes the outlines of primary components of KBP-750D.

  • PDF

Design of Whirl Tower Test Facility for Helicopter Rotor System (헬리콥터 로터시스템 회전시험설비의 설계)

  • Kim, Seung-Bum;Song, Keun-Woong;Choi, Hee-Ju;Kim, Eun-Jong;Park, Byung-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1136-1141
    • /
    • 2008
  • The helicopter rotor system generates lift, thrust, maneuvering force and moment to the helicopter with the torque and pitch control force transferred from the main rotor hub/control. And the tail rotor system generates the thrust for yaw axis control of the helicopter with the torque and pitch control force transferred from the tail rotor hub/control. Ground whirl test shall be performed to verify the compliance of requirement performance test and dynamic test of rotor blade and hub/control. This paper describes a design of whirl tower test facility for helicopter rotor system test and evaluation. Design results are summarized and compared with design requirements.

  • PDF

Implementation of Wind Power System and Development of a Automatic Tail Safety Controller (풍력발전시스템의 강풍제어기 개발 및 시스템 구성)

  • Choi, Jung-Hoon;Moon, Chae-Joo;Jang, Yung-Hak;Lee, Hyun-Ju
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.424-428
    • /
    • 2004
  • A wind turbine system converts wind energy into electric energy, the system operated under normal environmental conditions. In case of particular turbulent wind flow such as typhoon, hurricane etc, the control of a blade used to a yaw control and a pitch control method. A small wind turbine has not a speed control system to only a manual tail safety brake. This paper shows a automatic tail safety brake controller based on feedback control using wind velocity. The controller composed of wired motor, relay system, steel wired motor him down a perpendicular to wind flow and then the blade speed reduced high to zero. The operation of automatic tail safety controller verified by manual test.

  • PDF

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

Analysis of shaft torsion of a DFIG for a wind farm collector system fault (풍력발전단지 집합 시스템 사고 시 DFIG의 Shaft Torsion 분석)

  • Yoon, Eui-Sang;Lee, Jin-Shik;Lee, Young-Gui;Zheng, Tai-Ying;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.93-94
    • /
    • 2011
  • This paper analyzes the shaft torsion of a doubly-fed induction generator (DFIG) for a wind farm collector system fault. When a fault occurs, the active power of the DFIG cannot be transmitted to the grid and thus accelerates the rotation of both the blade and the rotor. Due to the different inertia of these, the angle of deviation fluctuates and the shaft torsion is occurred. This becomes much severe when the rotational speed of the blade exceeds a threshold, which activating the pitch control to reduce the mechanical power. The torque, which can be sixty times larger than that in the steady state, may destroy the shaft. The shaft torsion phenomena are simulated using the EMTP-RV simulator. The results indicate that when a wind farm collector system fault occurs, a severe shaft torsion is occurred due to the activation of the pitch control.

  • PDF

Individual Pitch Control of NREL 5MW Wind Turbine Blade for Load Reduction (NREL 5MW 풍력터빈의 블레이드 하중 저감을 위한 개별피치제어)

  • La, Yo-Han;Nam, Yoon-Su;Son, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1427-1432
    • /
    • 2012
  • As the size of a wind turbine increases, the rotor diameter increases. Rotor blades experience mechanical loads caused by the wind shear and the tower shadow effect. These mechanical loads reduce the life of the wind turbine. Therefore, with increasing size of the wind turbine, wind turbine control system design for the mitigation of mechanical loads is important. In this study, Individual Pitch Control in introduced for reducing the mechanical loads of rotor blades, and a simulation for IPC performance verification is discussed.

Performance Analysis and Pitch Control of Dual-Rotor Wind Turbine Generator System (Dual-Rotor 풍력 발전 시스템 성능 해석 및 피치 제어에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Jung, Sung-Nam;Kim, Ji-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.40-50
    • /
    • 2005
  • In this paper, preliminary results for performance prediction of a dual-rotor wind turbine generator system are presented. Blade element and momentum theories are used to model the aerodynamic forces and moments acting on the rotor blades, and multi-body dynamics approach is used to integrate the major components to represent the overall system. Not only the steady-state performance but the transient response characteristics are analyzed. Pitch control strategy to control the rotor speed and the generator output is proposed and its performance is verified through the nonlinear simulation.