• Title/Summary/Keyword: Blade Number

Search Result 490, Processing Time 0.026 seconds

Influences of Mach Number and Flow Incidence on Aerodynamic Losses of Steam Turbine Blade

  • Yoo, Seok-Jae;Ng, Wing Fai Ng
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.456-465
    • /
    • 2000
  • An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles ($-34^{\circ}\;to\;26^{\circ}$) and exit Mach numbers (0.6 and 1.15). Measurements included downstream Pitot probe traverses, upstream total pressure, and end wall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions ($M_2<0.9$). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it' s believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface.

  • PDF

A simple method for estimating transition locations on blade surface of model propellers to be used for calculating viscous force

  • Yao, Huilan;Zhang, Huaixin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.477-490
    • /
    • 2018
  • Effects of inflow Reynolds number (Re), turbulence intensity (I) and pressure gradient on the transition flow over a blade section were studied using the ${\gamma}-Re{\theta}$ transition model (STAR-CCM+). Results show that the $Re_T$ (transition Re) at the transition location ($P_T$) varies strongly with Re, I and the magnitude of pressure gradient. The $Re_T$ increases significantly with the increase of the magnitude of favorable pressure gradient. It demonstrates that the $Re_T$ on different blade sections of a rotating propeller are different. More importantly, when there is strong adverse pressure gradient, the $P_T$ is always close to the minimum pressure point. Based on these conclusions, the $P_T$ on model propeller blade surface can be estimated. Numerical investigations of pressure distribution and transition flow on a propeller blade section prove these findings. Last, a simple method was proposed to estimate the $P_T$ only based on the propeller geometry and the advance coefficient.

Rotor Blade Sweep Effect on the Performance of a Small Axial Supersonic Impulse Turbine

  • Jeong, Sooin;Choi, Byoungik;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.571-580
    • /
    • 2015
  • In this paper, a computational study was conducted in order to investigate the rotor blade sweep effect on the aerodynamics of a small axial supersonic impulse turbine stage. For this purpose, three-dimensional unsteady RANS simulations have been performed with three different rotor blade sweep angles ($-15^{\circ}$, $0^{\circ}$, $+15^{\circ}$) and the results were compared with each other. Both NTG (No tip gap) and WTG (With tip gap) models were applied to examine the effect on tip leakage flow. As a result of the simulation, the positive sweep model ($+15^{\circ}$) showed better performance in relative flow angle, Mach number distribution, entropy rise, and tip leakage mass flow rate compared with no sweep model. With the blade static pressure distribution result, the positive sweep model showed that hub and tip loading was increased and midspan loading was reduced compared with no sweep model while the negative sweep model ($-15^{\circ}$) showed the opposite result. The positive sweep model also showed a good aerodynamic performance around the hub region compared with other models. Overall, the positive sweep angle enhanced the turbine efficiency.

A study for improving the surgical mess using palatal and buccal mucosal incisions in oral and maxillofacial area (구개점막과 협점막의 절개에 사용되는 칼의 개선을 위한 기초 연구)

  • Seo Byoung-Moo;Choi Jin-Young;Lee Jong-Ho;Kim Myung-Jin;Choung Pill-Hoon
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Disposable blade is widely used for palatal and oral mucosal incision in oral and maxillofadal surgery nowadays, But its design and durability need for improvement, Especially, there are so many hard tissues intraoral area, such as bone and tooth, therefor the sharpness of the surgical blade was easily destroyed, The purpose of this study was to make basic data for developing new design of surgical blade using in oral and maxillofacial area including for the patients who have cleft lip and palate deformities, Some questionnaires about the usefulness of currently used surgical blades were sent to 150 dentists, the 54 of them made a reply, Secondly, The used-once blade and fresh new blade were examined under the scanning electron microscope with the 4000-times magnification, Lastly, the tissue reaction following the surgical incision with a fresh-new and a used blade on rat buccal cheek mucosa and hard palate was evaluated with light microscope with hematoxilin-eosin staining, The time interval from the surgical trauma to taking a sample were 1 day, 3 days, 7 days, and 14 days, At each time schedule, 2 Sprague-Dawley rats were sacrificed, Many dentists were agreed to need for changing the design of the surgical blades and also demand to improve the durability of the blades, They were also eager to adopt the new design of blade if it was available, The blade used in surgical extraction procedure was heavily damaged in its sharpe edge of number 15 blade, The histological differences were not prominent, but the delayed healing was detected in buccal mucosal defects especially in the surgical group with used blade, There are slight different changes in hard palatal defects between a used and a new blade group, In this study, we could find that there are imperative demanding on improvement of surgical blade design and durability for oral and maxillofadal area, The blade currently using in surgical extraction was easily damaged, The animal model of this study was not perfect for the purpose of this study.

  • PDF

Structural Design and Analysis upon Active Rotor Blade with Trailing-edge Flap (뒷전 플랩을 장착한 지능형 로터 블레이드의 구조 설계 및 해석)

  • Eun, Won-Jong;Natarajan, Balakumaran;Lee, Jae-Hwan;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • Vibratory loads imposed by the rotating blade upon the fuselage has been one of major obstacles in rotorcrafts. A new concept of rotor blade is currently developed to adopt an Active Trailing-edge Flap (ATF) to alleviate such obstacles. The flap is mounted at 65~85% spanwise location from the rotor hub. The nominal rotational speed of the blade is as high as 1,528 RPM, to match the required tip Mach number. Structural integrity is one of the important design aspects to be maintained and monitored in this special type of rotor. This is due to that many detailed components, which drive the flap, are inserted inside the rotating blade. To conduct its structural design and analysis, CAMRAD-II and the one-dimensional beam analysis are used. At the same time, three-dimensional finite element analysis are also used, such as MSC. PATRAN/NASTRAN, in order to analyze the details of the present active blade. As a result, comparable characteristics for the present rotor are predicted by both approaches.

A Heuristic Algorithm for a Turbine-Blade-Balancing Problem (터빈 블레이드 균형화를 위한 발견적 기법)

  • 최원준
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.193-196
    • /
    • 2000
  • In the turbine-blade manufacturing industry, turbine-blades are machined and then are assembled to form a circular roll of blades. The roll of blades should be balanced as much as possible, since otherwise the efficiency of the turbine generator might degrade. We propose a heuristic method for balancing blades based on the number partitioning algorithm. The proposed method outperformed existing methods remarkably in terms of the accuracy with a negligible increase in the running time.

  • PDF

Enhancement of Seaweed Rhizoid and Blade Formations by the Chlorophyte Codium fragile Extract (녹조류 청각 추출물에 의한 해조류 가근 및 유엽형성 촉진)

  • Getachew, Mehader;Getachew, Paulos;Cho, Ji-Young;Choi, Jae-Suk;Hong, Yong-Ki
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.484-489
    • /
    • 2016
  • Living organisms can maintain or extend their territories by producing allelochemicals that influence the growth, survival, and reproduction of other organisms. To identify natural biostimulants of positive allelochemicals, we screened 18 common seaweed extracts for enhancement of rhizoid and blade production in a convenient Porphyra suborbiculata monospore assay. By addition of methanolic extract from the most potent green seaweed, Codium fragile, 100% and 50% enhancement doses reflecting the amount of C. fragile extract required to enhance rhizoid formation (in terms of number of spores with rhizoids per total spores tested) were approximately 100 and 50 μg/ml, respectively, in the P. suborbiculata monospore culture. The C. fragile extract quickly enhanced rhizoid formation, rhizoid numbers per rhizoid-holding spore, rhizoid length, blade formation (in number of spores with blade per total spores tested), and blade length from most monospores at early culture days. The extract enhanced rhizoid formation after 2 days of culture significantly, rhizoid numbers per rhizoid-holding spore after 3 days, rhizoid length after 3 days, blade formation after 2 days, and blade length after 1 day, respectively, from most monospores. The allelochemicals that enhanced favorite seaweed species may be efficacious for new seaweed management technologies, including the development of biostimulant agents based on natural products.

Numerical Analysis of Flow-Induced Noise and Fan Performance in Suction Nozzle of a Vacuum Cleaner with a Double-Blade Fan (이중 블레이드 팬이 장착된 진공청소기 흡입 노즐내 유로 유동 소음 및 팬 성능 해석)

  • Park, I-Sun;Sohn, Chae-Hoon;Lee, Sung-Cheol;Oh, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2632-2637
    • /
    • 2007
  • Rotary performance and flow resistance induced by each element in suction nozzle of a vacuum cleaner with a double-blade rotary fan are investigated numerically and its relation with flow-induced noise and rotary performance is examined. Flow resistance and vorticity in suction nozzle are calculated and it is found that they are closely related with flow-induced noise. Gap between double blades, adoption of cross-flow fan, enlargement of flow inlet area, and optimization of blade number are tested for noise reduction. Finally, the effects of each method are verified experimentally. It is found that several combinations of the proposed methods can be adopted for noise reduction although the degree of reduction is not much.

  • PDF

Acoustic Analysis for Design Optimization of Hub-Blade Baffle in Liquid Rocket Engine (액체로켓엔진에서 음향해석을 통한 허브-블레이드 배플 형상의 최적화)

  • Kim, Hong-Jip;Kim, Seong-Ku;Seol, Woo-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.945-952
    • /
    • 2004
  • Acoustic characteristics of combustion chamber having various baffle configurations are numerically investigated by linear acoustic analysis to suggest reliable baffle specifications in first stage of KSLV-I. To determine the configuration of baffles, an acoustic modal analysis as well as the macroscopic analysis has been done. Hub has another effect of suppressing transverse acoustic mode by confining flow in baffled compartment over general effect of increase in acoustic damping of radial acoustic modes. So, a sufficient number of hub needs to be installed to obtain acoustic damping capacity. 3-blade configuration designed to suppress the first tangential mode has relatively low damping capacity, compared to 5 or 6-blade one. Optimum value of axial baffle length has been determined by comparing acoustic characteristics of combustion chamber having various baffle lengths.

Transient Response Analysis of Rotating Blade Considering Friction Damping Effect of Elastically Restrained Root in Resonant Frequency Range (공진 주파수 영역에서 탄성지지단의 마찰감쇠효과를 고려한 회전 블레이드의 과도응답해석)

  • 윤경재
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.100-112
    • /
    • 2003
  • This paper presents the transient response analysis of a rotating blade in resonant frequency range. It is shown that the modeling is considered in elastic foundation and friction damping effect. The equations of motion are derived and transformed into a dimensionless form to investigate general phenomena. Numerical results show that the magnitude of friction damping to reduce maximum transient response in near the critical angular speed. The method can be applied to a number of examples of the practical rotating blade system to minimize transient response in resonant frequency range.