• Title/Summary/Keyword: Blade Loading

Search Result 160, Processing Time 0.02 seconds

Evaluation of Design Program of Low-Noise Axial Fan (축류형 송풍기 저소음 설계 프로그램의 개발 및 평가)

  • 김기황;박준철;김진화;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.967-972
    • /
    • 2001
  • An axial fan design code, called iDesignFan$^{TM}$, was developed. In this code, three major loss models were used to predicted the aerodynamic performance of a fan. The overall sound pressure level, predicted from steady blade loading, is also used as an input parameter from the third loop of the designing process to acquire most silent fan for the given aerodynamic performance parameters. With this kind of inverse design concept used in this code, the period of designing a fan, which has given aerodynamic performance with minimal acoustic noise, is significantly shortened. The experimental results of a prototype fan, designed by this code, showed that aerodynamic and acoustic performance of an axial fan is reasonably well predicted. Thus, one can design/develop an axial fan in a short time by using the code.e.

  • PDF

Strength and Crack Growth Computation for Various types of Stringers for Stiffened Panels using XFEM Techniques

  • Krishna, Lok S;Reshma, G;Dattaguru, B
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.7-15
    • /
    • 2020
  • In this paper the crack growth, modeling, and simulation of the stiffened and un-stiffened cracked panels presented using commercially available finite element software packages. Computation of stresses and convergence of stress intensity factor for single edge notch (SEN) specimens carried out using the finite element method (FEM) and extended finite element method (XFEM) and compared with an analytical solution. XFEM techniques like cohesive segment method and LEFM using virtual crack closure technique (VCCT), used for crack growth analysis and presented results for un-stiffened and stiffened panels considering various crack domain. The non-linear analysis considering both geometric and material non-linearity on stiffened panels with various stringers like a blade, L, inverted T and Z sections the results were presented. Arrived at the optimum stringer section type for the considered panel under axial loading from the numerical analysis.

Wind spectral characteristics on strength design of floating offshore wind turbines

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.281-312
    • /
    • 2018
  • Characteristics of a turbulence wind model control the magnitude and frequency distribution of wind loading on floating offshore wind turbines (FOWTs), and an in-depth understanding of how wind spectral characteristics affect the responses, and ultimately the design cost of system components, is in shortage in the offshore wind industry. Wind spectrum models as well as turbulence intensity curves recommended by the International Electrotechnical Commission (IEC) have characteristics derived from land-based sites, and have been widely adopted in offshore wind projects (in the absence of site-specific offshore data) without sufficient assessment of design implications. In this paper, effects of wind spectra and turbulence intensities on the strength or extreme responses of a 5 MW floating offshore wind turbine are investigated. The impact of different wind spectral parameters on the extreme blade loads, nacelle accelerations, towertop motions, towerbase loads, platform motions and accelerations, and mooring line tensions are presented and discussed. Results highlight the need to consider the appropriateness of a wind spectral model implemented in the strength design of FOWT structures.

A Study on Optimum Shaft Alignment Analysis for VLCC (VLCC의 최적 축계정렬해석 연구)

  • Kim Hyu Chang;Kim Jun Gi
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.134-137
    • /
    • 2005
  • Recently, in VLCC, shafting system is stiffer due to large engine power whereas hull structure is more flexible due to scantling optimization, which can be suffered from alignment damage by incompatibility between shafting and hull, In this study, shafting system without stern tube forward bush was adapted for less sensitive system against external factors. Also, shaft alignment analysis was considered with hull deflection at various ship loading conditions and stern tube after bush of long journal bearing was evaluated by static squeezing pressure and dynamic oil film pressure with sloping control. Whirling vibration was also reviewed to avoid resonance with propeller blade order. So, reliable shafting design for VLCC could be achieved through optimized alignment analysis for the system without stern tube forward bush.

  • PDF

Evaluation of high temperature tensile behavior and LCF properties of stainless steel for turbine disks (터빈 디스크용 스테인리스강의 고온 인장 및 저주기 피로 물성 측정)

  • Im, H.D.;Park, C.K.;Lee, K.;Rhim, S.H.;Kim, C.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.334-337
    • /
    • 2007
  • Austenitic stainless steel is used as high temperature components such as gas turbine blade and disk because of its good thermal resistance. In the present investigation, tensile and low cycle fatigue(LCF) behavior of stainless steel for turbine disks was studied at wide temperature range $20^{\circ}C\;{\sim}\;750^{\circ}C$. In the tensile tests, it was shown that elastic modulus, yield strength, ultimate tensile strength decreased when temperature increased. The effect on fatigue failure of the parameters such as plastic strain amplitude, stress amplitude and plastic strain energy density was also investigated. Coffin-Manson and Morrow models were used to adjust experimental data and predict the fatigue life behavior at different mean strain values during cyclic loading of high temperature components.

  • PDF

Numerical Study of Passive Control with Slotted Blading in Highly Loaded Compressor Cascade at Low Mach Number

  • Ramzi, Mdouki;Bois, Gerard;Abderrahmane, Gahmousse
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.97-103
    • /
    • 2011
  • With the aim to increase blade loadings and stable operating range in highly loaded compressors, this article has been conducted to explore, through a numerical parametric study, the potential of passive control using slotted bladings in cascade configurations. The objective of this numerical investigation is to analyze the influence of location, width and slope of the slots and therefore identify the optimal configuration. The approach is based on two dimensional cascade geometry, low speed regime, steady state and turbulent RANS model. The results show the efficiency of this passive technique to delay separation and enhance aerodynamic performances of the compressor cascade. A maximum of 28.3% reduction in loss coefficient have been reached, the flow turning is increased with approximately $5^0$ and high loading over a wide range of angle of attack have been obtained for the optimized control parameter.

Aerodynamic Design and Numerical Analysis on a Transonic Centrifugal Compressor (천음속 원심압축기의 공력설계 및 수치해석)

  • Choi, Jae-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.56-62
    • /
    • 2008
  • This study presents the aerodynamic design and numerical analysis results on a transonic centrifugal compressor which is used for gas turbine systems. Mean-line analysis and quasi-3D analysis are used for the aerodynamic design, and Reynolds-averaged Navier-Stokes analysis is applied to flow analysis of the compressor. The aerodynamic parameters for a transonic compressor, such as pressure coefficient, swirl parameter, blade loading, are discussed, and flow characteristics in the impeller and diffuser are discussed.

An Analysis of Internal Flow of Diagonal Flow Blower with Quasi-Three-Dimensional Calculation Method Considering the Spanwise Mixing due to Secondary Flow (이차흐름에 의한 스팬방향의 믹싱효과를 고려한 준3차원 계산법을 이용한 사류송풍기 내부흐름의 해석)

  • Park, S.R.;Kim, Y.J.;Kim, T.W.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.21-31
    • /
    • 1999
  • This paper presents a quasi-three-dimensional calculation method considered a spanwise mixing effect in a diagonal flow impeller. The effect of this spanwise mixing caused by spanwise distribution of blade loading is evaluated by a secondary flow theory. In order to verify the validity of this method, it is applied to the analysis of a diagonal flow fan designed under a vortex type of constant circumferential velocity and that of a free vortex. The comparison of the calculated result with experimental data shows a good agreement except the regions near the casing where the flow field is affected by the tip leakage flow.

  • PDF

Numerical Analysis of Orthotropic Composite Propellers (직교이방성 복합소재 프로펠러 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Ruy, Won-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.377-386
    • /
    • 2019
  • Flexible composite propellers have a relatively large deformation under heavy loading conditions. Thus, it is necessary to accurately predict the deformation of the blade through a fluid-structure interaction analysis. In this work, we present an LST-FEM method to predict the deformation of a flexible composite propeller. Here, we adopt an FEM solver called OOFEM to carry out a structural analysis with an orthotropic linear elastic composite material. In addition, we examine the influence of the lamination direction on the deformation of the flexible composite propeller.

Verification of Hovering Rotor Analysis Code Using Overlapped Grid (중첩격자를 이용한 제자리비행 로터 해석 코드의 수치특성)

  • Kim, Jee-Woong;Park, Soo-Hyung;Yu, Yung-Hoon;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.719-727
    • /
    • 2008
  • A 3-D compressible Navier-Stokes solver using overlapped grids is developed to predict a flow-field around a hovering rotor. The flow solver is verified by a parametric study with the grid spacing of wake grid, spatial accuracy and turbulence model. Computations are performed with different Chimera grid systems. Computational results are compared with the experimental data of Caradonna et al. for both blade loading and the tip vortex behavior. Numerical results show good agreements with experiments for the distribution of surface pressure and tip vortex behavior. Pressure distributions over the blade have marginal differences for different numerical methods, whereas large discrepancies are seen in the prediction of the wake behavior. Results unexpectedly show that the vortex strength from an automated cut-paste Chimera grid is weaker than that from the conventional Chimera grid.