• Title/Summary/Keyword: Bitterness hydrolysate

Search Result 11, Processing Time 0.034 seconds

Optimization of Reduced Bitterness of Alcalase-treated Anchovy Engrauris japonica Hydrolysate by Aminopeptidase Active Fraction from Common Squid Todarodes pacificus Hepatopancreas (살 오징어(Todarodes pacificus) 간췌장 유래 Aminopeptidase 활성획분에 의한 Alcalase 처리 멸치(Engrauris japonica) 가수분해물의 쓴맛 개선 최적화)

  • Yoon, In Seong;Kim, Jin-Soo;Lee, Jung Suck;Kwon, In Sang;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.724-732
    • /
    • 2021
  • This study used response surface methodology to investigate the optimal conditions to reduce the bitterness of alcalase-treated anchovy hydrolysate (AAH) by the aminopeptidase active fraction (AAF) derived from the common squid Todarodes pacificus hepatopancreas. The central composite design selected AAF/AAH ratio (X1, %) and hydrolysis time (X2, h) as independent variables, and the degree of hydrolysis (Y1) and bitterness (Y2) as dependent variables. The uncoded values of the multiple response optimization for independent variables were 3.4% for the AAF/AAH ratio and 9.2 h for the hydrolysis time. The predicted values of the yield and bitterness score of alcalase-AAF continuously treated anchovy hydrolysate (AAAH) under the optimized conditions were 68.9% and 4.6 points, respectively. Their measured values of 69.5% for yield and 4.6±0.5 points for bitterness were similar to the predicted values. The food components of AAAH were 91.4% (moisture), 7.5% (protein), 0.1% (lipid) and 0.6% (ash). The findings indicate the potential value for use as an anchovy seasoning base. The results also confirm that the bitterness of AAH was remarkably improved by AAF and implicates AAF derived from squid hepatopancreas as a good enzyme to catalyze reduced bitterness.

Preparation of Onion Hydrolysate for Usage of Sauce (조미액으로의 활용을 위한 양파 가수분해물 제조)

  • 조원대;유광원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1147-1151
    • /
    • 1997
  • To develop an onion sauce, reaction conditions of celluclast 1.5L and pectinex on onion were investigated and organoleptic evaluations were carried out. Degree of hydrolysis(D.H) of hydrolysate by a mixture of celluclast 1.5L and pectinex was a higher than that by each enzyme. Hydrolysate by a mixture of celluclast 1.5L and pectinex(1:3v/v) showed 86% of D.H. and total sugar content of the hydrolysate was 54mg/ml. Hydrolysates showed 83~86% of D.H. at reaction temperature of $25^{\circ}C$ to 45$^{\circ}C$. Total sugar content of the hydrolysate was increased with increasing temperature. D.H. and total sugar content of hydrolysate was 76~86% and 51~63mg/ml, respectively, under acidic conditions. D.H. and total sugar content of hydrolysate were also increased with increasing time. Bitterness, sweetness and ordor of roasted pork prepared by adding onion and onion hydrolysate were significantly different(p<0.05), but color and preference between two groups were not significantly different(p<0.05) between two groups. There was no significant difference(p<0.05) in sweetness and bitterness of the roasted pork prepared by adding different amounts of onion hydrolysate, although ordor and preference of the roasted pork were significantly different(p<0.05).

  • PDF

Debittering of Enzymatic Hydrolysate Using Exopeptidase Active Fractions from the Argentina Shortfin Squid Illex argentinus Hepatopancreas (원양산 오징어(Illex argentinus) 간췌장 유래 Exopeptidase 분획물의 쓴맛개선 효과)

  • Kim, Jin-Soo;Kim, Min Ji;Kim, Ki Hyun;Kang, Sang In;Park, Sung Hwan;Lee, Hyun Ji;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.135-143
    • /
    • 2014
  • Exopeptidase active fractions from the hepatopancreas of the Argentina shortfin squid Illex argentinus, were obtained with acetone (AC 30-40%), ammonium sulfate (AS 60-70% saturation), anion exchange chromatography (AE-II, 0.2 M NaCl) and gel filtration chromatography (GF-I, 30-50 kDa) fractionation methods. A bitter peptide solution that has a bitterness equivalent to that of 2% glycylphenylalanine and prepared by tryptic hydrolysis of milk casein, was treated with the exopeptidase active fractions. The GF-I fraction was the best based on aminopeptidase activity (35.3 U/mg), percentage of recovery (30.7%) and a sensory evaluation (1.7). The amount of released amino acids increased as incubation time increased, and the bitterness of the enzyme reaction mixtures decreased. Incubation with the GF-I fraction for 24 h resulted in the hydrolysis of several peptides as revealed by the reverse-phase high performance liguid chromatography profile, with three peaks (3, 5 and 6) decreasing in area (%) and three peaks (1, 2 and 4) increasing in area (%). Therefore, the GF-I fraction appeared to be ideally suited to reduce bitterness in protein hydrolysates by catalyzing the hydrolysis of bitter peptides.

Preparation of Pronase Hydrolysate from Alaska-pollack (명태단백 Pronase 가수분해물의 제조)

  • 서형주
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.4
    • /
    • pp.335-343
    • /
    • 1995
  • In order to enhance the utility of alaska-pollack, the optimum conditions for the preparation of pronase hydrolysate. The optimum temperature and pH for the hydrolysis of alaska-pollack by pronase were 4$0^{\circ}C$ and pH 7.0. The reaction time and enzyme concentration were 4 hr and 1,000 units per g of substrate. Under the above optimum conditions alaska-pollack was hydrolysed by pronase yielding a hydrolytic degree of about 89eye. The bitterness and hyrophobicity of pronase hydrolysate were decreased with increasing reaction time. Hydrophobic amino acids(Tyr, Met, Ala, flu, Leu, and Phe) were increased for 2 hr, but fur thor hydrolysis was showed decrease of hydrophobic amino acids content. Palatable amino acids (Asp, Glu, Pro, Ser, Thr and Gly) were increased with hydrolysis time.

  • PDF

Bitterness and Solubility of Soy Protein, Casein, Gluten, and Gelatin Hydrolysates Treated with Various Enzymes (효소종류에 따른 대두단백, 카제인, 글루텐, 젤라틴 단백질 가수분해물의 쓴맛과 용해도 특성)

  • Kim, Mi-Ryung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.587-594
    • /
    • 2010
  • To develop commercially available food protein hydrolysates, the effects of different types of enzymes and substrates on bitterness and solubility of partially hydrolyzed food proteins were investigated. Four types of proteins (casein, isolated soy protein (ISP), wheat gluten, and gelatin) and five types of proteolytic enzymes (a microbial alkaline protease (alcalase), a microbial neutral protease (neutrase), papain, bromelain, trypsin) were used. To profile the pattern of hydrolysis, the degree of hydrolysis (DH) were monitored during 180 min of reaction time by pH-stat method. Casein showed the highest susceptibility to hydrolysis for all five proteases compared to those of ISP, gluten, and gelatin. In addition, the bitter intensity and solubility (nitrogen soluble index, NSI) of each protein hydrolysate were compared at DH 10%. Bitterness and solubility of protein hydrolysates were highly affected by DH and the types of enzymes and substrates. At DH=10%, casein hydrolysate by trypsin, ISP and gluten hydrolysates by either bromelain or neutrase, and gelatin hydrolysates by the five proteases tested in this study were highly soluble and less bitter.

Production of protein hydrolysate and plastein from alaska-pollack (명태단백 가수분해물 제조 및 plastein의 합성)

  • Suh, Hyung-Joo;Lee, Ho;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.339-345
    • /
    • 1992
  • In order to enhance the processing quality and utility of alaska-pollack meat, the optimum conditions for the preparation of pronase hydrolysate and the synthesis of plastein were investigated. The optimum temperature and pH for the hydrolysis of alaska-pollack by pronase were $40^{\circ}C$ and pH 7.0. The reaction time and enzyme concentration were 4 hr and 1,000 units per g of substrate. Under the above optimum conditions alaska-pollack was hydrolyzed by pronase yielding a hydrolytic degree of about 89%. Pronase hydrolysate was employed as substrate for plastein synthesis. The 30% pronase hydrolysates were adjusted to pH 7 for fruit-bromelain and pH 5 for stem-bromelain, and then plastein were synthesized by 1% bromelain at $40^{\circ}C$ for 24 hr. The plasteins synthesized by fruit- and stem-bromelain were consisted of peptides having average peptide length of 22.6 and 20.8 under the optimum synthetic conditions. The plastein synthesis reaction reduced considerably the bitterness of pronase hydrolysate.

  • PDF

Preparation and Food Characteristics of Seasoned Anchovy Sauce with Improved Bitterness by Treatment of Aminopeptidase Active Fraction Derived from Common Squid Todarodes pacificus Hepatopancreas (살 오징어(Todarodes pacificus) 간췌장 유래 Aminopeptidase 활성획분에 의해 쓴맛이 개선된 멸치 조미소스의 제조 및 식품특성)

  • Yoon, In Seong;Kim, Jin-Soo;Choe, Yu Ri;Sohn, Suk Kyung;Lee, Ji Un;Kang, Sang In;Kwon, In Sang;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.849-860
    • /
    • 2021
  • This study investigated the preparation of seasoned anchovy sauce (SAS) and its functional characteristics by using aminopeptidase active fractions (AAFs) derived from squid Todarodes pacificus hepatopancreas as a bitter taste improver. As the base of the SAS, a hydrolysate (AAAH) prepared by continuously treating raw anchovies with Alcalase-AAF was used. The high-performance liquid chromatography profile of the AAAH suggested that the action of AAFs decreased the hydrophobicity of the N-terminal peptide related to bitterness in the protein hydrolysates. SAS was prepared by blending with the AAAH and other ingredients. The crude protein (2.5%), carbohydrates (18.4%), amino acid-nitrogen (1,325.1 mg/100 mL), and total free and released amino acids (FRAAs, 700.2 mg/100 mL) of SAS were higher than those of commercial anchovy sauce (CAS). Sensory evaluation revealed that SAS was superior to CAS in flavor, color, and taste. The main FRAAs of SAS were glycine (16.8%), alanine (13.2%), glutamic acid (7.8%), and leucine (7.3%). The amino acids that had a major influence on the taste according to the SAS taste values were glutamic acid, aspartic acid, alanine, and histidine. The angiotensin-converting enzyme inhibitory (2.21 mg/mL) and antioxidant activities (3.58 mg/mL) of SAS were superior to those of CAS.

Lowering the Bitterness of Enzymatic Hydrolysate Using Aminopeptidase-active Fractions from the Common Squid (Todarodes pacificus) Hepatopancreas (살 오징어(Todarodes pacificus) 간췌장으로부터 aminopeptidase 활성 획분의 쓴맛 개선 효과)

  • Kim, Jin-Soo;Kim, Hye-Suk;Lee, Hyun Ji;Park, Sung Hwan;Kim, Ki Hyun;Kang, Sang In;Heu, Min Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.716-722
    • /
    • 2014
  • Aminopeptidase-active fractions from crude extract of the hepatopancreas of a common squid (Todarodes pacificus) were obtained using acetone (AC; 30-40%) and ammonium sulfate precipitation (AS; 60-70% saturation), anion exchange (AE-II; 0.2 M NaCl) and gel filtration chromatography (GF-I; 30-50 kDa), respectively. The debittering capacity of GF-I fraction based on the aminopeptidase activity (89.2 U/mg), recovery (56.6%) and sensory evaluation (1.0) was better than that of other fractions. Release of amino acids increased as incubation time was increased, and the bitterness of the enzyme reaction mixtures decreased. Incubation with the GF-I fraction for 24 h resulted in the hydrolysis of several peptides, as revealed by reverse-phase HPLC profiles. Peaks 3, 5 and 6 showed the decreased area (%), whereas peaks 1, 2 and 4 showed the increased area. The GF-I fractions were found to be suitable for reducing bitterness in protein hydrolysates by catalyzing the hydrolysis of bitter peptides.

Characteristics of Whey Protein (WPC-30) Hydrolysate from Cheese Whey (치즈유청으로부터 제조한 유청단백질 가수분해물의 특성에 관한 연구)

  • Yoon, Yoh-Chang;An, Sung-Il;Jeong, A-Ram;Han, Song-Ee;Kim, Myeong-Hee;Lee, Chang-Kwon
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.435-440
    • /
    • 2010
  • Whey protein concentrate (WPC) is widely used to increase the nutritional and functional properties of food. In this study, the physiochemical and functionality of WPC-30 hydrolysates were examined to evaluate the possibility of application in the food industry. The WPC-30 was manufactured using ultrafiltration and spray-drying, and then hydrolyzed with proteolytic enzyme including alcalase, flavourzyme, nuetrase and protamex. Enzymatic hydrolysis had a significant influence on the physicochemical properties as evident from the increased foaming capacity, solubility. Alcalase caused highest protein hydrolysis (3.26%) and the bitterness. Foaming capacity was largest in WPC-30 hydrolysate treated with flavourzyme. Protein solubility at various levels of pH was highest in protamex-treated WPC-30 hydrolysate. However, the solubility of WPC-30 hydrolysates was significantly improved in alkaline condition than in acidic and neutral conditions. The study revealed that spray dried enzyme modified WPC can be used in various functional food.

Bitter Peptides Derived from ${\alpha}_{s1}-and\;{\beta}-Casein$ Digested with Alkaline Protease from Bacillus subtilis (Bacillus subtilis의 염기성 프로테아제로 분해된 ${\alpha}_{s1}$- 및 ${\beta}$-카세인에서 분리된 쓴 맛 펩타이드)

  • Sohn, Kyung-Hyun;Lee, Hyong-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.659-665
    • /
    • 1988
  • The ${\alpha}_{s1}$-and ${\beta}$-casein were purified by DEAE-cellulose chromatography and digested with alkaline protease from Bacillus subtilis. Bitter fractions from the hydrolyzates were isolated using n-butanol extraction, Sephadex G-25 gel chromatography, and high performance liquid chromatography. Peptide mixtures were separated by reverse-phase octadecyl silica column with linear gradient of 0-80% acetonitrile containing 0.1% trifluoroacetic acid. Major peaks were combined from replicate chromatographies and the bitterness of each peak was evaluated. The bitter-tasting peaks were rechromatograpied until isolated peaks were obtained. Three different bitter peptides(BP-I, BP-II, BP-III) were obtained from the ${\alpha}_{s1}$-casein hydrolyzate. BP-I was eluted at 34% acetonitrile and BP-II, 35%, BP-III, 26%, respectively. Two bitter peptides(BP-IV, BP-V) were isolated from the ${\beta}-casein$ hydrolyzate: BP-IV was eluted at 40% acetonitrile and BP-V, 42%. BP-V was the most hydrophobic peptide in the five bitter peptides. However, BP-I and BP-II tasted more bitter than BP-IV and BP-V.

  • PDF