• Title/Summary/Keyword: Biting force

Search Result 32, Processing Time 0.025 seconds

Factor Affecting Mandibular Rotational Troque Movements (하악의 비틀림회전운동에 영향을 미치는 요인)

  • 이유미;한경수;허문일
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.2
    • /
    • pp.143-155
    • /
    • 1998
  • This study was performed to investigate the factor that might affect mandibualr body rotation. For the study, 115 patients with temporomandibular disorders and 35 dental students without angy signs and symptoms of temporomandibular disorders were randomly selected as the patient group and the contreol group, respectively. Preferred chewing side, Angle' classification, lateral guidance pattern, and affected side were clinically recorded, and the amount of Mandibular body rotational torque movement was measured in wide opening and closure, in right and left excursion with vertical and lateral distance in frontal plane, right and left rotational angel in horizontal and in frontal plane. Masticatory muscle activity of anteriorocclusal contact pattern on maximal hard biting were also observed synchronously with BioEMG and T-Scan , respectively. The observed items were muscle activity of anterior temporalis and superficial masseter, and tooth contact status related to contact number, force, duration, and occlusal unbalance between right and left arch. The data collected were analyzed by SAS statistical program. The results of this study were as follows : 1. Mean value of vertical distance in frontal plane in wide opening and closure was more in control subjects than in patients, but there was no difference for rotational angle. In right excursion, rotational angles were greater in patient group than in control group. 2. Comparison among the subjects by preferred chewing side did not reveal any significant difference, but comparison among patients by affected side showed more rotational amount in bilaterally affected patients than in unilaterally affected patients. 3. Comparison among the subjects by Angle's classification or lateral guidance pattern revealed no difference. There was also no difference between preferred chewing side and contralateral side, and between affected side and contralateral side. 4. Positive correlation in madibular rotational torque movements were observed among vertical distance, total horizontal rotation angle, electromyographic activity of anterior temporalis, tooth contact number, and tooth contact force but total frontal rotation angle almost did not show any correlation with other variables except vertical distance.

  • PDF

Flexural strengths of implant-supported zirconia based bridges in posterior regions

  • Rismanchian, Mansour;Shafiei, Soufia;Nourbakhshian, Farzaneh;Davoudi, Amin
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.346-350
    • /
    • 2014
  • PURPOSE. Impact forces in implant supported FDP (fixed dental prosthesis) are higher than that of tooth supported FDPs and the compositions used in frameworks also has a paramount role for biomechanical reasons. The aim of this study was to evaluate the flexural strength of two different zirconia frameworks. MATERIALS AND METHODS. Two implant abutments with 3.8 mm and 4.5 mm platform were used as premolar and molar. They were mounted vertically in an acrylic resin block. A model with steel retainers and removable abutments was fabricated by milling machine; and 10 FDP frameworks were fabricated for each Biodenta and Cercon systems. All samples were thermo-cycled for 2000 times in $5-55^{\circ}C$ temperature and embedded in $37^{\circ}C$ artificial saliva for one week. The flexural test was done by a rod with 2 mm ending diameter which was applied to the multi-electromechanical machine. The force was inserted until observing fracture. The collected data were analyzed with SPSS software ver.15, using Weibull modulus and independent t-test with the level of significance at ${\alpha}=.05$. RESULTS. The mean load bearing capacity values were higher in Biodenta but with no significant differences (P>.05). The Biodenta frameworks showed higher load bearing capacity ($F_0=1700$) than Cercon frameworks ($F_0=1520$) but the reliability (m) was higher in Cercon (m=7.5). CONCLUSION. There was no significant difference between flexural strengths of both zirconia based framework systems; and both Biodenta and Cercon systems are capable to withstand biting force (even parafunctions) in posterior implant-supported bridges with no significant differences.

A THREE DIMENSIONAL FINITE ELEMENT ANALYSIS WITH CAVITY DESIGN ON FRACTURE OF COMPOSITE RESIN INLAY RESTORED TOOTH (복합레진 인레이 수복시 와동형태에 따른 치아파절에 관한 유한요소법적 연구)

  • Kim, Chull-Soon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.231-254
    • /
    • 1994
  • Fracture of cusp, on posterior teeth, especially those carious or restored, is major cause of tooth loss. Inappropriate treatments, such as unnecessarily wide cavity preparations, increase the potential of further trauma and possible fracture of the remaining tooth structures. Fracture potential may be directly related to the stresses exerted upon the tooth during masticatory function. The purpose of this study is to evaluate the fracture resistance of tooth, restored with composite resin inlay. In this study, MOD inlay cavity prepared on maxillary first premolar and restored with composite resin inlay. Three dimensional finite element models with eight nodes isoparametric solid element, developed by serial grinding-photographing technique. These models have various occlusal isthmus and depth of cavity, 1/2, 1/3 and 1/4 of isthmus width and 0.7, 0.85 and 1.0 of depth of cavity. The magnitude of load was 474 N and 172 N as presented to maximal biting force and normal chewing force. These loads applied onto ridges of buccal and lingual cusp. These models analyzed with three dimensional finite element method. The results of this study were as follows : 1. There is no difference of displacement between width of occlusal isthmus and depth of cavity. 2. The stress concentrated at bucco-mesial comer, bucco-disal comer, pulpal line angle and the interface area between internal slopes of cusp and resin inlay. 3. The vector of stress direct to buccal and lingual side from center of cavity, to tooth surface going on to enamel. The magnitude of vector increase from occlusal surface to cervix. 4. The crack of tooth start interface area, between internal slop of buccal cusp and resin inlay. It progresses through buccopulpal line angle to cervix at buccomesial and buccodistal comer. 5. The influence with depth of cavity to fracture of tooth was more than width of isthmus. 6. It would be favorable to make the isthmus width narrower than a third of the intercuspal distance and depth of cavity is below 1 : 0.7.

  • PDF

A Biomechanical Analysis or the Stress Distribution of Dental Implant and Alveolar Bone Utilizing Finite Element Method (유한요소법을 이용한 치과용 고정체와 치조골에서의 응력분포에 대한 생체 역학적 분석)

  • Jung, J.K.;Shin, J.W.;Lee, S.J.;Kim, Y.K.;Kim, J.S.;Park, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.511-514
    • /
    • 1997
  • The objective of this study is to propose a finite element based design of the dental implant replacing unction and shape of natural teeth. For this, geometric actors were varied to investigate stress distribution of the alveolar bone around dental implant. In this study, the results were obtained based on the theory of linear elastic, with geometrically axisymmetric assumption. Geometric actors determining implant shape are ranged as 0.2mm-0.6mm, 0.04mm-0.1mm, 0.46mm-0.84mm or height of thread, radius of curvature of thread, and pitch, respectively. The stresses in the alveolar bone caused by biting force playa major role in determining implant stability. Especially, the stress concentration in the cortical bone causes bone resorption and finally makes the implant unstable. Therefore, the stress distributions were investigated on the side of the alveolar bone focusing on the area of cortical bone. The maximum von Mises stress was found to increase up to 6% as the height of thread increases, while its value was to decrease to 19% when the radius of curvature increase within the assigned ranges. For the variation of pitch, the larger size of pitch results in greater maximum von Mises stress when the length of the implant under consideration is fixed. The existence of the neck below the shoulder did not affect the stress distribution in the region of alveolar bone. However, the stresses on the side of the implant near the neck were found to be different by 20% approximately. Therefore, the neck can provide the stability of the implant against continuing biting movement. As a conclusion, the finite element based study shows a potential in designing the dental implant systematically.

  • PDF

A study on the fracture strength of collarless metal-ceramic fixed partial dentures

  • Yoon, Jong-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.134-141
    • /
    • 2010
  • PURPOSE. The objective of this study was to evaluate fracture strength of collarless metal-ceramic FPDs according to their metal coping designs. MATERIALS AND METHODS. Four different facial margin design groups were investigated. Group A was a coping with a thin facial metal collar, group B was a collarless coping with its facial metal to the shoulder, group C was a collarless coping with its facial metal 1 mm short of the shoulder, and group D was a collarless coping with its facial metal 2 mm short of the shoulder. Fifteen 3-unit collarless metal-ceramic FPDs were fabricated in each group. Finished FPDs were cemented to PBT (Polybutylene terephthalate) dies with resin cement. The fracture strength test was carried out using universal testing machine (Instron 4465, Instron Co., Norwood MA, USA) at a cross head speed of 0.5 mm/min. Aluminum foil folded to about 1 mm of thickness was inserted between the plunger tip and the incisal edge of the pontic. Vertical load was applied until catastrophic porcelain fracture occurred. RESULTS. The greater the bulk of unsupported facial shoulder porcelain was, the lower the fracture strength became. However, there were no significant differences between experimental groups (P > .05). CONCLUSION. All groups of collarless metal-ceramic FPDs had higher fracture strength than maximum incisive biting force. Modified collarless metal-ceramic FPD can be an alternative to all-ceramic FPDs in clinical situations.

AN INTEGRATED EMG STUDY OF RELATIONSHIPS BETWEEN PREFERRED CHEWING AND SIDE OF INITIAL MUSCLE PAINS (습관적(習慣的) 저작(咀嚼)과 저작근(咀嚼筋)의 동통유발(疼痛誘發)과의 관계에 대한 근전도학적(筋電圖學的) 연구(硏究))

  • Lee, Sung-Bok;Choi, Dae-Gyun;Choi, Boo-Byung;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.24 no.1
    • /
    • pp.165-176
    • /
    • 1986
  • The purpose of this study was to investigate electromyographically the relationship between preferred chewing side and side of initial muscle pains. In this study, 20 normal healthy subjects were selected , and each subject chewed randomly chewing gum for 20 minutes to establish preferred chewing side. To induce initial muscle pains, biting force of 10Kg on the gnathodynamometer was maintained by the subjects. And the Bioelectric processor EM2(Myo-Ironies Research, Inc. U.S.A.) with the surface electrodes was used to record the EMG activity during all experimental procedures. The results were as follows; 1. A majority of the present subjects (60%) had a preferred chewing side, but with few exceptions, subjects were unable to explain why a given side was preferred; explanations were only 'comfort' and 'habit' 2. The chewing, or working side was determined largely by the mean voltage of the surface electromyogram (EMG); in comparison with EMG from the non-wlring (contralateral) side, the working (ipsilateral) side showed a higher amplitude. 3. After the effort, the right masseter muscle is the most frequent site of pains, followed by the left masseter muscle, the anterior part of the right temporalis muscle and tile anterior part of the left temporalis muscle. 4. After the effort, mean voltages of masseter muscles were slightly increased, but mean voltages of temporalis anterior were slightly decreased at physiologic rest position. 5. No relationships could be established between preferred chewing side and side of initial muscle pains.

  • PDF

A STUDY ON THE MANDIBULAR MOMENTS ACCORDING TO ANTERO-POSTERIOR PLACEMENT OF PIVOT ON LOWER NATURAL DENTITION (자연치열에 설치한 pivot의 전후방 일치변화에 따른 하악의 moment에 관한 연구)

  • Lee Hyun-Shick;Park Nam-Soo;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.394-410
    • /
    • 1993
  • This study was accomplished for appreciation of the mandibular moments according to antero- posterior movement of pivot placed on the lower natural dentition. For this study, 20 subjects(male, $21\sim30$ yrs., average age 24) in the category of normal occlusion were selected, and the intraoral Vitallium clutches were cast and fabricated for each subjects. A 2-dimension PSD(Position Sensitive Detector, Hamamatsu Photonics Co., Japan) was attached to maxillary clutch in a mode of three dimensional control and LED (Light Emit Diode, Hamamatsu Photonics Co., Japan) was set up on mandibular clutch. Both clutches were set into oral cavity of each subjects and adjusted. Then the subjects were allowed to intercuspated with maximal bite force while the pivoting ball in the mid-line moving from anterior toward posterior position. The displacement scales were recorded by CCD camera(Sony, CCD-TR-705) and VCR, The conclusions were as follows : 1. When the subject was allowed to bite the metal pivoting ball in the midline of lower dentition with maximal bite force voluntarily while moving from lower central incisor to canine, 1st premolar, End premolar, 1st molar and 2nd molar. The lever actions on the pivot were revealed in all subjects. The equilibrium of moment were revealed on the pivots of 1st premolar(14 subjects), End premolar(4 subjects), and canine(2 subjects) areas. 2. The changes of loading on the TMJ according to antero-posterior positional changes of metal pivoting ball were able to recognize as follow. Compression on the TMJ was increased when the pivot moves anteriorly from the equilibrium point, and tension on the TMJ was increased when posteriorly. 3. 13 subjects were recognized their habitual chewing sides(Rights, Left8), and 7 subjects were not. During maximal biting, mandible was displaced toward their habitual chewing sides on the metal pivoting ball in the frontal plane. 4. In cephalometric analysis, the average genial angle of 20 subjects was $116.75^{\circ}$ and the average mandibular body length was 79.77mm. The equilibrium points of mandibular moment were positioned more posteriorly in the subjects having larger Genial angle than in the smaller(p<0.05). Relationships among the angle between FH plane and occlusal plane, the angle between occlusal plane and mandibular plane , and mandibular body length were not significant(p>0.05).

  • PDF

Mechanical strength of Zirconia Abutment in Implant Restoration (지르코니아 임플란트 지대주의 기계적 강도에 관한 연구)

  • Shin, Sung-ae;Kim, Chang-Seop;Cho, Wook;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2009
  • Purpose: As the esthetic demands of dental implant patients are increased, the demands of zirconia as implant abutment material are also increased. It has non-metalic color, good biocompatibility, high strength and high toughness. Even thought the advatage of zirconia abutment, there are a few studies about mechanical properties of zirconia abutment. This study evaluated the mecanical strength with compressive bending strength and endurance limit of implant-zirconia abutment assembly. Materials and Methods: Static and cyclic loading of implant-Zirconia abutment assembly were simulated under worst case condition according to ISO. Test groups were implants of external butt joint with straight regular diameter and angled regular diameter zirconia abutment, implant of external butt joint with narrow straight diameter zirconia abutment and implant of internal conical joint with straight narrow diameter zirconia abutment. All test group were evaluated the mecanical strength with compressive bending strength and endurance limit. After fatique testing, fracture surface were examined by SEM. Results: The compressive bending strengths exceed 927N. Regular diameter zirconia abutment were stronger than narrow diameter zirconia abutment(P<.05). The endurance limits ranged from 503N to 868N. Conclusion: Within the limitation of this study, zirconia implant abutment exceeded the estabilished values for maximum incisal biting forces reported in the literature.

Effects of Oral Parafunction on the Stiffness and Elasticity in the Muscles of the Mastication and Facial Expression (구강악습관이 저작근 및 안면표정근의 경직도 및 탄성도에 미치는 영향)

  • Kim, Seung-Ki;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.1
    • /
    • pp.85-95
    • /
    • 2008
  • The purpose of this study was to evaluate the effects of oral habits on the muscles of mastication and facial expression by means of two parameters: muscle stiffness and elasticity. 10 healthy, fully-dentate male subjects in their twenties were selected for this study; all had normal Class I occlusal relationships. Muscle stiffness and elasticity were measured with a tactile sensor(Venustron, Axiom Co., JAPAN) while subjects were asked to relax and perform various parafunctional activities such unilateral clenching(biting the bite force recorder with a force of 50kg on each subject's preferred side), jaw thrusting and lip bracing. The following muscles were examined: temporalis anterior(Ta), masseter(Mm), frontalis(Fr), inferior orbicularis oculi(OOci), zygomaticus major(Zm), superior and inferior orbularis oris(OOrs and OOri) and mentalis(Mn). Paired t-test, Correlation Coefficients, ANOVA and Multiple Comparison t-tests were used for statistical analysis. Unilateral clenching was highly correlated with bilateral stiffness and elasticity of all the muscles tested. Mm was affected by all three oral habits; Ta was affected by unilateral clenching(p<0.05); Zm was affected by unilateral clenching and OOrs, OOri and Mn were most affected by lip bracing(p<0.05). This study indicates that not only the masticatory muscles but also the muscles of facial expression, mainly circumoral muscles, can be significantly influenced by parafunctional activities such as unilateral clenching and lip bracing.

Analysis of Occlusal Contacts Using Add-picture Method (Add-picture 방법을 이용한 교합접촉점 분석)

  • Park, Ko-Woon;Cho, Lee-Ra;Kim, Dae-Gon;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.45-58
    • /
    • 2013
  • The purpose of this study was to analyze the area of occlusal contact points using visual method. One subject was selected who had Angle Class I, normal dentition, without dental caries, periodontal disease and temporomandibular disorders. Forty times PVS impressions were taken and 10 pairs casts were fabricated using dental super hard stone. After mounting the casts with customized loading apparatus, 78.9kg/f force was loaded as a maximum biting force. In T-Scan method, occlusal contact points measurement was repeated twice. Then, using Photoshop program (Adobe photoshop CS3, Adobe. San Jose, USA), the pixels which indicated occlusal contact points by color was recognized, and the distribution of recognized pixels were calculated to area. In Add picture method, polyether bite material applied to the occlusal surface of the casts. Then, the image of the translucent areas was recorded and classified $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$, $0{\sim}60{\mu}m$ area by the amount of transmitted light. To acquire occlusal surface, the numbers of pixels from the photograph of the contact area indicated cast converted to $mm^2$. The mean occlusal contact area by two methods was statistically analyzed (paired t-test). Part of the red and pink area in T-Scan image were almost equivalent to the $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$, $0{\sim}60{\mu}m$ area in Add picture image. The distribution of occlusal contact points were similar, but the average area of occlusal contact points was wider in T-scan image (P<.05). Pink and red area in T-scan image was wider than $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$ area in Add picture image (P<.05), but similar to $0{\sim}60{\mu}m$area in Add picture image (P>.05). Occlusal contact points in T-scan image did not indicate real occlusal contact points. Occlusal contact areas in T-scan method were enlarged results comparing with those in Add picture method.