• Title/Summary/Keyword: Bit error

Search Result 2,269, Processing Time 0.028 seconds

BER Performance Analysis of Groupwise Iterative- Multipath Interference Cancellation(GWI-MPIC) Algorithm for Coherent HSDPA System (동기식 HSDPA시스템의 그룹단위 반복 다중경로 간섭제거 알고리즘의 오류율 성능해석)

  • 구제길
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.231-241
    • /
    • 2004
  • This paper drives the exact expression of bit error rate(BER) performance for groupwise iterative-multipath interference cancellation(GWI-MPIC) algorithm for cancelling multipath interference components in a coherent high-speed downlink packet access(HSDPA) system of W-CDMA downlink and the BER performance is evaluated by numerical analysis. The performance of GWI-MPIC is compared to the successive interference cancellation(SIC) algorithm for multipath components. From numerical results, the optimal average BER performance of weighting factor ${\beta}$$\_$h/ for interference cancellation is obtained at ‘${\beta}$$\_$h/=0.8’ and then this weighting factor is hereafter applied to other performance analysis. Numerical results showed that the average BER performance of GWI-MPIC algorithm is rapidly degraded at multipath L=6, but is revealed the good performance than that of SIC algorithm in terms of increasing the number of multipath. This results also indicated that the average BER performance is greatly degraded due to increasing interference power more than multicode K=8. The average BER performance of the proposed algorithm is superior to the performance of SIC algorithm about 3 ㏈ for processing gain PG=128 at multipath L=2 and Average BER=1.0${\times}$10$\^$-5/. And also, the results produced good performance in case of linear monotonic reduction of multipath fading channel gain than that of constant channel gain variation, because multipath fading channel gain which is arrived later is small.

Design and Analysis of 4D-8PSK-TCM System Considering the Nonlinear HPA Environment (비선형 HPA 환경을 고려한 4D-8PSK-TCM 시스템의 설계 및 분석)

  • An, Changyoung;Ryu, Sang-Burm;Lee, Sang-Gyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.299-307
    • /
    • 2018
  • Considering a nonlinear high power amplifier(HPA) and a predistorter, we have designed a four-dimensional 8-ary phase shift keying trellis-coded modulation(4D-8PSK-TCM) system, which is recommended for X-band satellite communications. Subsequently, we have evaluated and analyzed the spectrum, constellation characteristics, and BER performance of the system. In satellite communications, owing to the limited power, nonlinear characteristics that determine the operating point of the HPA must be analyzed because the HPA consumes high power. We herein report the design of the 4D-8PSK-TCM system, with efficiencies of 2 and 2.25 bits/channel-symbol. The simulation results confirmed that a 0.35 roll-off value is effective, considering the low peak-to-average power ratio(PAPR) characteristic and the narrow occupation bandwidth of the spectrum. It also confirmed that approximately 15~20 dB of output backoff(OBO) value is required at the HPA when the predistorter is not used, and approximately 1 dB of the OBO value is required when the predistorter is used.

Concatenated Diversity System for Bandwidth Efficient Communication of Flight Type Air Node in Unstable Channel Environments (비정형 통신 채널 환경에서 비행형 에어노드의 대역 효율적인 통신을 위한 연접 다이버시티 시스템)

  • Kang, Chul-Gyu;Park, Jin-Hee;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.247-254
    • /
    • 2012
  • In this paper, we propose a concatenated diversity system to assure the data transmission reliability between flight type air nodes which move according to their atypical orbit, then its performance is analyzed using computer simulation and it is designed with hdl. The proposed system cannot only improve a bandwidth efficient and coding gain from diversity TCM code but also the reliability of data transmission is high. From the computer simulation result about bit error rate(BER) of the proposed system, we confirm that its BER performance is about 11dB greater than TCM code at $10^{-2}$ and about 11dB greater than space time block code at $10^{-3}$ which has a full diversity gain. In addition, when we compare its BER performance with space time trellis code which has both a diversity gain and a coding gain, the performance of the proposed system is greater than about 1.5dB at $10^{-5}$. Lastly, after designing the proposed system with HDL, we can confirm that the operation result is correct.

Performance Analysis of MVDR and RLS Beamforming Using Systolic Array Structure (시스토릭 어레이 구조를 갖는 최소분산 비왜곡응답 및 최소자승 회귀 빔형성기법 성능 분석)

  • 이호중;서상우;이원철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • This paper analyses the performance of either the minimum variance distortionless response (MVDR) or the recursive least square (RLS) beamformer structured on the systolic array. Provided that the snapshot vector including the desired user's signal and the interferences with the noise is received at the array antenna. In order to improve the quality of received signal, MVDR or RLS algorithm can be utilized to update the beamformer weights recursively. Furthermore to increase the channel capacity, by the usage of the above schemes, the effect of the spatial filtering can be obtained which constructively combining multipath components corresponding to the desired user whereas the multiple access interferences (MAI) is nulled out on spatial domain. This paper introduces the MVDR and RLS beamformer structured on systolic array conducting the spatial filtering, and its performance under the multipath fading channel in the presence of multiple access interferences will be analyzed. To show the superior spatial filtering performances of the proposed scheme employing the systolic way structured beamformer, the computer simulations are carried out. And the validity of practical deployment of the proposed scheme will be confirmed throughout showing the BER behaviors and the beampatterns.

Effect of frequency dependent multipath fading on non-coherent underwater communication system (주파수 종속 다중경로 페이딩이 비코히어런트 수중통신시스템에 미치는 영향)

  • Kim, Jongjoo;Park, Jihyun;Bae, Minja;Park, Kyu-Chil;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.295-302
    • /
    • 2016
  • Underwater acoustic communication channel is often defined as a multipath fading channel since the multipath arrivals from various paths interfere with each other and cause frequency dependent constructive or destructive interference in received signals. Therefore signal-to-noise ratio (SNR) of received signal fluctuates as a function of frequency. In addition, sea surface fluctuation induces frequency dependent time variant signal fading due to coherent component variation of surface bounce path. The frequency shift keying (FSK) system is known to be less sensitive and more robust under these interference and fading, and M-ary frequency shift keying (MFSK) system is adopted to increase a data rate. In this study, a bit error rate (BER) of 4 channels 4FSK system are examined in shallow sea multipath channel. Experimental results show that RS code reduces efficiently the BER of 4FSK system since frequency dependent time-varying fading is characterized to give burst errors. The BER of a different data rate or different source-to-receiver range depends on not only the channel coherent bandwidth but also frequency dependent multipath fading.

Interference Alignment in 2-user X Channel System with Orthogonal and quasi-orthogonal Space-time Block Codes (직교 및 준직교 시공간 블록 부호를 통한 2-사용자 X 채널에서의 간섭정렬)

  • Mohaisen, Islam;Lee, Saet-byeol;Mohaisen, Manar;Elaydi, Hatem
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1785-1796
    • /
    • 2015
  • In this paper, we investigate achieving the full diversity order and power gains in case of using OSTBCs and quasi-OSBCs in the x channel system with interference alignment with more than 2 antennas at each terminal. A slight degradation is remarked in the case of quasi-OSTBCs. In terms of receiver structure, we show that due to the favorable structure of the channel matrices, the simple zero-forcing receiver achieves the full diversity order, while the interference cancellation receiver leads to degradations in performance. As compared to the conventional scheme, simulation results demonstrate that our proposed schemes achieve 14dB and 16.5dB of gain at a target bit error rate (BER) of 10-4 in the case of OSTBCs with 3 and 4 antennas at each terminal, respectively, while achieving the same spectral efficiency. Also, a gain of 10dB is achieved at the same target BER in the case of quasi-OSTBC with 4 antennas at each terminal.

Spectral and Energy Efficient Spatially Modulated Non-Orthogonal Multiple Access (NOMA) For 5G (5G를 위한 주파수 및 에너지 효율적인 공간 변조 비-직교 다중 접속 기법)

  • Irfan, Mohammad;Kim, Jin Woo;Shin, Soo Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1507-1514
    • /
    • 2015
  • Non-orthogonal multiple access (NOMA) is a promising candidate for 5G networks. NOMA achieves superior spectral efficiency than conventional orthogonal multiple access (OMA), as in NOMA multiple users uses the same time and frequency resources. Multiple-input-multiple-output (MIMO) is one another promising technique that can enhance system performance. In this paper we present a spectral and energy efficient multiple antenna based NOMA scheme, known as spatially modulated NOMA. In the proposed scheme the cell edge users are multiplexed in spatial domain, which means the information to cell edge users is conveyed using the transmit antenna indices. In NOMA the performance of cell edge users are deeply effected as it treats signals of others as noise. The proposed scheme achieves superior spectral efficiency than the conventional NOMA. The number of decoding steps involved in decoding NOMA signal reduces by one as cell edge user is multiplexed in spatial domain. The proposed scheme is more energy efficient as compare to conventional NOMA. All of the three gains high spectral, energy efficiency and one step reduction in decoding comes at cost of multiple transmit antennas at base station.

REAL - TIME ORBIT DETERMINATION OF LOW EARTH ORBIT SATELLITES USING RADAR SYSTEM AND SGP4 MODEL (RADAR 시스템과 SGP4 모델을 이용한 저궤도 위성의 실시간 궤도결정)

  • 이재광;이성섭;윤재철;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • In case that we independently obtain orbital informations about the low earth satellites of foreign countries using radar systems, we develop the orbit determination algorithm for this purpose using a SGP4 model with an analytical orbit model and the extended Kalman filter with a real-time processing method. When the state vector is Keplerian orbital elements, singularity problems happen to compute partial derivative with respect to inclination and eccentricity orbit elements. To cope with this problem, we set state vector osculating to mean equinox and true equator cartesian elements with coordinate transformation. The state transition matrix and the covariance matrix are numerically computed using a SGP4 model. Observational measurements are the type of azimuth, elevation and range, filter process to each measurement in a lump. After analyzing performance of the developed orbit determination algorithm using TOPEX/POSEIDON POE(precision 0.bit Ephemeris), its position error has about 1 km. To be similar to performance of NORAD system that has up to 3km position accuracy during 7 days need to radar system performance that have accuracy within 0.1 degree for azimuth and elevation and 50m for range.

The study on the capacity of synchronous CDMA return link for a Ka band satellite communication system (Ka 대역을 사용하는 동기화 CDMA 위성 시스템 리턴링크의 수용용량에 관한 연구)

  • 황승훈;이용한;박용서;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1797-1806
    • /
    • 1998
  • Future satellite communication systems will be developed at Ka-band (20/30 GHz) owing to the relatively wide frequency allocation and current freedom from terrestrial interference for multimedia services. A serious disadvantage of the Ka-band, however, is the very high atmospheric attenuation in rainy weather. Synchronous CDMA drastically redces the effect of self-noise with several interesting features of CDMA for mobile communications such as fixible freuqncy rese, the capability of performin soft-handover and a lower sensitivity to interference. This paper evaluates the performance of a synchronous CDMA reture link for a Ka-band geostationary satellite communication system. For a fixed satellite channel whose characteristics depend on weather conditions, the signal envelope and phase for this channel is modelled as Gaussian. The bit error and outage probability, and the detection loss due to imperfect chip timing synchronization is analytically evaluated and the system capacity degaradation due to the weather condition is estimated. The two cases consist of the general case in which all users are affected by rain condition, and the worst case in which the reference user is only affected by rain attenuation. the results for two cases of rain condition clearly show that synchronous CDMA eases the power control requirements and has less sensitivity to imperfect power control.

  • PDF

Data Transmission Rate Improvement Scheme in Power Line Communication System for Smart Grid (스마트 그리드를 위한 전력선 통신 시스템에서의 데이터 전송률 향상 기법)

  • Kim, Yo-Cheol;Bae, Jung-Nam;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1183-1191
    • /
    • 2010
  • In this paper, I propose an adaptive OFDM CP length algorithm for in PLC systems for smart grid. The proposed scheme calculates the channel delay information at the CP controller of the receiver by taking correlation between a received data frame and the following delayed one. The CP controller, immediately, feeds back the channel delay information to the transmitter. Then, the transmitter adapts CP length for next data frame. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of packet data rate, cumulative packet data rate, and bit error rate (BER). The simulation results showed data gain (which is the amount of the reduced bits) gets larger as the number of packets increase, but the amount of data gain reduced as the number of branches ($N_{br}$) increase. In respects of BER for the cases $N_{br}$ is 3, 4, and 5, performance of the adaptive CP length algorithm and the fixed CP scheme are similar. Therefore, it is confirmed the proposed scheme achieved data rate increment without BER performance reduction compared to the conventional fixed CP length scheme.