• 제목/요약/키워드: Bismuth(Bi)

검색결과 298건 처리시간 0.024초

Bi를 $He^3$로 照射하였을때 生産되는 At 同位元素 (The Astatine Isotopes Produced in $He^3$ Bombardment of Bismuth)

  • 이익춘
    • 대한화학회지
    • /
    • 제7권2호
    • /
    • pp.159-164
    • /
    • 1963
  • $Bi^{209}$ $를\;He^3$로 조사했을때 생긴 At 同位元素를 Alpha Ionization Chamber 및 100 Channel 파고분석기로 조사하였다. 주생성물은 ($He^3$, 3n) 반응으로 생기는 $At^{209}$였고, 그외에도 4종의 At同位元素를 얻었다. 各 同位元素상대적인 수량을 반정양적으로 계산하였다.

  • PDF

Bi, Ce가 도핑된 YAG계 형광체의 발광 특성 (Luminescence properties of Bi, Ce activated YAG based phosphor materials)

  • 김세헌;한태수;이상근;정천기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 1999
  • The luminescence of bismuth and cerium doped yttrium aluminum based Phosphors $Y_{3}$/Al$_{5}$/O$_{12}$ and (Y$_{0.8}$/Gd$_{0.2}$)$_3$Al$_{5}$/O$_{12}$ prepared by a solid-state reaction method were studied. These samples which were fired at 1, 20$0^{\circ}C$ show the characteristic X-ray diffraction patters for the main phase(420) of YAG. This study indicates that the both flux and remained bismuth after the firing phosphor materials give rise to affect the photoluminescence properties. Therefore, it was investigated that both the XRD patterns arid the PL properties were affected by the controlling experimental process variables.riables.les.

  • PDF

Differences of Structural and Electronic Properties in $Ba_{1-x}K_xBiO_3$ (x=0, 0.04, and 0.4)

  • 정동운;최은국
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권9호
    • /
    • pp.1045-1048
    • /
    • 1999
  • Electronic structures calculated based upon the extended Huckel tight-binding method for Ba1-xKxBiO3 with x = 0, 0.04, and 0.4 are reported. It is noticed that the commensurate ordering of Bi 3+ and Bi 5+ is responsible for the insulating and semiconducting behavior in BaBiO3 and Ba0.96K0.04BiO4. The band gaps of 3.2 eV and 1.4 eV for the former and the latter compounds, respectively, are consistent with the experimental results. Doping in Bi 6s-block band up to x = 0.4 causes the collapse of the ordering of Bi 3+ and Bi 5+, thereby resulting in the superconductivity in the Ba0.6K0.4BiO3 compound. Strikingly, the character of oxygen contributes to the conducting mechanism than that of the bismuth. This is quite different from the cuprate superconductors in which the character of copper dominates that of oxygen.

Luminescence of CaS:Bi

  • 김창홍;편종홍;최 한;김성진
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권3호
    • /
    • pp.337-340
    • /
    • 1999
  • Luminescence of bismuth activated CaS, CaS:Bi, prepared in sodium polysulfide is studied. Excitation spectrum of CaS:Bi shows a band at 350 nm due to the recombination process between holes in Na+Ca2+ and electrons in conduction bands, in addition to bands at 260 nm from band gap of CaS, and at 320 nm (1S0→1P1) and at 420 nm (1S0→3P1) from electronic energy transitions of Bi. Emission band at 450 nm is from 3P1→1S0 transition of Bi3+, bands at 500 nm and 580 nm correspond to recombinations of electron donors (Bi3+Ca2+ and VS2-) with acceptors (VCa2+ and Na+Ca2+). Emission band of 3P1→1S0 transition is shifted to longer wavelength from CaS:Bi to BaS:Bi, due to the increase of the Stokes shift by the decrease of the crystal field parameter from CaS:Bi to BaS:Bi.

나노구조를 기반으로 하는 Bi2Te3 소결과 그 시간에 따른 열전 특성 (The Effect of Sintering on the Thermoelectric Properties of Bulk Nanostructured Bismuth Telluride (Bi2Te3))

  • 유수산나;강민석;김도경;문경숙;;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제27권9호
    • /
    • pp.561-565
    • /
    • 2014
  • Thermoelectric materials have been the topic of intensive research due to their unique dual capability of directly converting heat into electricity or electrical power into cooling or heating. Bismuth telluride ($Bi_2Te_3$) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications In this work we focus on the large scale synthesis of nanostructured undoped bulk nanostructured $Bi_2Te_3$ materials by employing a novel bottom-up solution-based chemical approach. Spark plasma sintering has been employed for compaction and sintering of $Bi_2Te_3$ nanopowders, resulting in relative density of $g{\cdot}cm^{-3}$ while preserving the nanostructure. The average grain size of the final compacts was obtained as 200 nm after sintering. An improved NS bulk undoped $Bi_2Te_3$ is achieved with sintered at $400^{\circ}C$ for 4 min holding time.

MOCVD 법에 의한 Bi-Te계 열전소재 제조 및 박막형 열전소자 제작 (Growth of Bi-Te Based Materials by MOCVD and Fabrication of Thermoelectric Thin Film Devices)

  • 권성도;주병권;윤석진;김진상
    • 한국전기전자재료학회논문지
    • /
    • 제21권12호
    • /
    • pp.1135-1140
    • /
    • 2008
  • Bismuth-telluride based thin film materials are grown by Metal Organic Chemical Vapor Deposition(MOCVD). A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the sample was heated by heating block and the voltage output measured. As expected for a thermoelectric generator, the voltage decreases linearly, while the power output rises to a maximum. The highest estimated power of $1.3{\mu}W$ is obtained for the temperature difference of 45 K. we provide a promising procedure for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which may have nanostructure with high thermoelectric properties.

MOCVD를 이용한 BiSbTe3 박막성장 및 열전소자 제작 (Properties of BiSbTe3 Thin Film Prepared by MOCVD and Fabrication of Thermoelectric Devices)

  • 권성도;윤석진;주병권;김진상
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.443-447
    • /
    • 2009
  • Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_{2}Te_{3}$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $5{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_{2}Te_{3}$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_{2}Te_{3}$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3 ${\mu}m$ is obtained at the temperature difference of 45 K.

Bi, In을 함유한 Sn-Cu-Ni계 솔더 합금 제조와 물성 (The Properties and Processing of Bismuth and Indium Added Sn-Cu-Ni Solder Alloy System)

  • 박종원;최정철;최승철
    • 마이크로전자및패키징학회지
    • /
    • 제9권1호
    • /
    • pp.21-28
    • /
    • 2002
  • Sn-Cu-Ni계 솔더 합금에 소량의 Bi와 In을 첨가하여 새로운 무연솔더 합금 개발을 진행하였다. Sn-0.7%(Cu+Ni)에 2~5% Bi. 2~10% In을 첨가하여 각각의 열적, 전기적, 기계적 특성을 평가하였다. 솔더합금의 융점은 200~$222^{\circ}C$, 응고온도범위는 20~$37^{\circ}C$로 중.고온계 솔더로서 적용이 가능하다. 실험 조성별 솔더 합금중 실용적, 경제적인 면을 고려하여 Sn-0.7%(Cu+Ni)-3.5%Bi-2%In이 최적의 합금 조성으로 판단된다. 이 합금은 융점이 $220^{\circ}C$정도이며 응고범위는 $25^{\circ}C$, 강도 면에서는 타 합금에 비해 상당히 우수한 값을 나타내었으며 연신율은 비교적 낮은 값을 나타내었다. 다른 기계적, 전기적 특성은 타 솔더 합금과 유사하거나 우수한 편이었으며 젖음특성도 양호하였다.

  • PDF

낙동 비소-비스무스 광상의 Pb-Ag-Bi-S계 광물의 산출양상과 화학조성 (Occurrence and Mineral Chemistry of Pb-Ag-Bi-S System Minerals in the Nakdong As-Bi Deposits, South Korea)

  • 신동복
    • 자원환경지질
    • /
    • 제39권6호
    • /
    • pp.643-651
    • /
    • 2006
  • 낙동 비소-비스무스 광상에서 산출되는 Pb-Ag-Bi-S계에 광물로는 방연석-마틸다이트(matildite) 고용체, 코살라이트(cosalite) 및 헤이로브스카이트(herovskyite)가 있다. 방연석-마틸다이트 고용체의 경우 자연비스무스와 더불어 황철석내의 틈을 채우면서 산출되는데, 불규칙한 모양을 이룬다. 코살라이트는 석영맥내에서 자연비스무스, 헤이로브스카이트 및 Bi-Te-S계 광물들을 포함하며, 타형의 독립된 결정으로 산출된다. 낙동광상에서 산출되는 마틸다이트는 $Ag_{1.07-1.11}Bi_{1.12-1.20}S_2$의 단성분 조성을 이루는 것므로 이상화학조성에 비해 $0.3{\sim}2.4$mole%의 $Bi_2S_3$가 초과 함유되어 있다. PbS와 $AgBiS_2$를 단성분하는 고용체의 경우 PbS는 약 54 mole% 이하의 함량을 나타내고, 그 이상의 경우는 관찰되지 않는다. 연구지역 코살라이트의 평균화학소성은 $Pb_{1.79}Bi_{2.29}Ag_{0.12}S_5$로서 순수한 코살라이트에 비하여서는 Pb가 결핍되어 있으며, Ag와 Cu를 각각 최대 1.47 wt.%와 0.27 wt.% 함유하고 있다. 헤이로브스카이트는 $Pb_{5.01}Ag_{0.26}Bi_{2.70}S_9$ 조성을 보이는데 $2Pb^{2+}$에 대한 $Ag^++Bi^{3+}$의 쌍치환과 더불어 $3Pb^{2+}$에 대한 $2Bi^{3+}$의 치환이 함께 일어난 것으로 여겨진다. 낙동광상의 Pb-Ag-Bi-S계 광물들의 생성 조건은 대략 $220{\sim}270^{\circ}C$ 온도와 200bar 미만의 압력인 것으로 해석된다.

Bi 첨가량에 따른 BLT 박막의 유전특성 (Dielectric properties of $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films with Bi contents)

  • 김경태;김창일;강동희;심일운
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.371-374
    • /
    • 2002
  • Bismuth lanthanum titanate thin films with excess Bi contents were prepared onto Pt/Ti/$SiO_2$/Si substrate by metalorganic decomposition (MOD) technique. The structure and morphology of the films were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. From the XRD analysis, BLT thin films show polycrystalline structure and the layered-perovskite phase was obtained over 10% excess of Bi contents. As a result of ferroelectric characteristics related to the Bi content of the BLT thin film, the remanent polarization and dielectric constant decreased with increasing over Bi content of 10 % excess. The BLT film with Bi content of 10% excess was measured to have a dielectric constant of n9 and dielectric loss of 1.85[%]. The BLT thin films showed little polarization fatigue test up to 3.5 x $10^{9}$ bipolar switching cycling.

  • PDF