• Title/Summary/Keyword: Bird communication

Search Result 16, Processing Time 0.017 seconds

Enhancement of the k-Means Clustering Speed by Emulation of Birds' Motion in Flock (새떼 이동의 모방에 의한 k-평균 군집 속도의 향상)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.965-970
    • /
    • 2014
  • In an effort to improve the convergence speed in k-means clustering, we introduce the notion of the birds' movement in a flock. Their motion is characterized by the observation that each bird runs after his nearest neighbor. We utilize this feature in clustering procedure. Once the class of a vector is determined, then a number of vectors in the vicinity of it are assigned to the same class. Experiments have shown that the required number of iterations for termination is significantly lower in the proposed method than in the conventional one. Furthermore, the time of calculation per iteration is more than 5% shorter in the proposed case. The quality of the clustering, as determined from the total accumulated distance between the vector and its centroid vector, was found to be practically the same. It might be phrased that we may acquire practically the same clustering result with shorter computational time.

A Lane Tracking Algorithm Using IPM and Kalman Filter (역투영 변환과 칼만 필터를 이용한 주행차선 추적)

  • Yeo, Jae-Yun;Koo, Kyung-Mo;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2492-2498
    • /
    • 2013
  • In this paper, A lane tracking algoritm is proposed for lane departure warning system. To eliminate perspective effect, input image is converted into Bird's View by inverse perspective mapping. Next, suitable features are extracted for lane detection. Using clustering and lane similarity function with noise suppression features are extracted. Finally, lane model is calculated using RANSAC and lane model is tracked using Kalman Filter. Experimental results show that the proposed algorithm can be processed within 20ms and its detection rate approximately 90% on the highway in a variety of environments.

Distributed Transmit Power Control Algorithm Based on Flocking Model for Energy-Efficient Cellular Networks (에너지 효율적인 셀룰러 네트워크를 위한 플로킹 모델 기반 분산 송신전력제어 알고리즘)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1873-1880
    • /
    • 2016
  • Most of the energy used to operate a cellular network is consumed by a base station (BS), and reducing the transmission power of a BS is required for energy-efficient cellular networks. In this paper, a distributed transmit power control (TPC) algorithm is proposed based on the flocking model to improve the energy efficiency of a cellular network. Just as each bird in a flock attempts to match its velocity with the average velocity of adjacent birds, in the proposed algorithm each mobile station (MS) in a cell matches its rate with the average rate of the co-channel MSs in adjacent cells by controlling the transmit power of its serving BS. Simulation results show that the proposed TPC algorithm follows the same convergence properties as the flocking model and also effectively reduces the power consumption at the BSs while maintaining a low outage probability as the inter-cell interference increases. Consequently, it significantly improves the energy efficiency of a cellular network.

Interpretation of Siberian shaman costume through Roland Barthes's semiotics approach (롤랑 바르트의 기호학 접근을 통한 시베리아 샤먼복식의 해석)

  • Liu, Shuai;Kwon, Mi Jeong
    • The Research Journal of the Costume Culture
    • /
    • v.28 no.6
    • /
    • pp.858-874
    • /
    • 2020
  • This study attempts to analyze the social and cultural meanings of the ethnic groups to which different types of shamans belong in Siberia from the appearance characteristics in terms of clothing through Roland Barthes's semiotic theory. The research method here is to analyze three types of shaman costume classified by Holmberg, which are bird-type, deer-type, and bear-type, through theoretical research and to investigate the analysis process of Roland Barthes's semiotics theory. Roland Barthes's approach to semiotics presents an analysis model that can explore the sociocultural meaning of the Siberian shaman costume. The research results are as follows. In the first type, to be closer to the god of the upperworld, shamans transform themselves into birds by decorating their costumes with the characteristic elements of birds such as feathers and wings. In the second type, the shamans' costumes are made of deerskin, and the headdress is shown in the shape of antlers to make it easier to receive messages from the upperworld and run fast in the underworld. In the third type, the shaman's costume is made of bearskin, the head is covered with bearskin, and the body is decorated with bear pendants. Through the power of the bear, the shaman is sent to the underworld to defeat evil gods and remove diseases. Shamans can show their particularity of being a demigod and non-binary gender through clothing. They use this to reflect their authority as a medium of communication between man and god.

Molecular Signatures in Chicken Lungs Infected with Avian Influenza Viruses

  • Jeong Woong Park;Marc Ndimukaga;Jaeyoung Heo;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.193-202
    • /
    • 2023
  • Influenza IAVs are encapsulated negative-strand RNA viruses that infect many bird species' respiratory systems and can spread to other animals, including humans. This work reanalyzed previous microarray datasets to identify common and specific differentially expressed genes (DEGs) in chickens, as well as their biological activities. There were 760 and 405 DEGs detected in HPAIV and LPAIV-infected chicken cells, respectively. HPAIV and LPAIV have 670 and 315 DEGs, respectively, with both viruses sharing 90 DEGs. Because of HPAIV infection, numerous genes were implicated in a fundamental biological function of the cell cycle, according to the functional annotation of DEGs. Of the targeted genes, expressions of CDC Like Kinase 3 (CLK3), Nucleic Acid Binding Protein 1 (NABP1), Interferon-Inducible Protein 6 (IFI6), PIN2 (TERF1) Interacting Telomerase Inhibitor 1 (PINX1), and Cellular Communication Network Factor 4 (WISP1) were altered in DF-1 cells treated with polyinosinic:polycytidylic acid (PIC), a toll-like receptor 3 (TLR3) ligand, suggesting that transcription of these genes be controlled by TLR3 signaling. To gain a better understanding of the pathophysiology of AIVs in chickens, it is crucial to focus more research on unraveling the mechanisms through which AIV infections may manipulate host responses during the infection process. Insights into these mechanisms could facilitate the development of novel therapeutic strategies.

Evolutionary Optimization of Neurocontroller for Physically Simulated Compliant-Wing Ornithopter

  • Shim, Yoonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.25-33
    • /
    • 2019
  • This paper presents a novel evolutionary framework for optimizing a bio-inspired fully dynamic neurocontroller for the maneuverable flapping flight of a simulated bird-sized ornithopter robot which takes advantage of the morphological computation and mechansensory feedback to improve flight stability. In order to cope with the difficulty of generating robust flapping flight and its maneuver, the wing of robot is modelled as a series of sub-plates joined by passive torsional springs, which implements the simplified version of feathers attached to the forearm skeleton. The neural controller is designed to have a bilaterally symmetric structure which consists of two fully connected neural network modules receiving mirrored sensory inputs from a series of flight navigation sensors as well as feather mechanosensors to let them participate in pattern generation. The synergy of wing compliance and its sensory reflexes gives a possibility that the robot can feel and exploit aerodynamic forces on its wings to potentially contribute to the agility and stability during flight. The evolved robot exhibited target-following flight maneuver using asymmetric wing movements as well as its tail, showing robustness to external aerodynamic disturbances.