• 제목/요약/키워드: Bipolar-Plate Design

검색결과 42건 처리시간 0.037초

전기자동차용 Cold Plate의 열전달 및 압력손실 특성 연구 (Heat Transfer and Pressure Drop Characteristics of the Cold Plate for an Electric Vehicle)

  • 함진기;이준엽;송석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1566-1571
    • /
    • 2003
  • The cold plate used for a CEU(Control Electronics Unit) of an EV(Electric Vehicle) is extremely important since the dissipation of the heat generated from power devices like IGBT(Insulated Gate Bipolar Transistor) and diode has a significant effect on the performance as well as the durability of the CED. The cold plate consists of seven power devices, and coolant flows through the passage bonded to a groove of the cold plate. In order to find out heat transfer and pressure drop characteristics, series of numerical analyses for the cold plate with enhanced coolant passages were conducted. Based on results of the numerical analyses, an improved model of the cold plate has been proposed. The experiments under the various conditions have been conducted to compare the performance of the proposed cold plate to the present one. As a result of the numerical analyses together with the experiments, the ideal design of the cold plate could be offered.

  • PDF

혼합 다채널 사형 유로의 혼합영역이 PEMFC 성능에 미치는 영향 (The Effect of Mixing Region in Mixed Multiple Serpentine Flow-field to PEMFC Performance)

  • 이지홍;이명용;김헌주;이상석;이도형
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.265-273
    • /
    • 2009
  • Proton Exchange Membrane Fuel Cell (PEMFC) has low operating temperature and high efficiency. And PEMFC consists of many components as bipolar plate, gas diffusion layer, membrane etc.. Flow-field in bipolar plate roles path for transporting reactants to membrane. Therefore a design of flow-field has an effect on PEMFC's performance. In this study, Computational Fluid Dynamics (CFD) simulations were performed for comparing mixed multiple serpentine (MMS) flow-field and multiple serpentine (MS) flow-field. And we studied an effect according to change mixing region design in MMS flow-field. Finally the applicability of results is verified by performing CFD simulation about fixed MMS flow-field which is combined good designs.

건물용 고분자 전해질 연료전지 금속분리판 유동장 형상 변화에 따른 산소 확산 특성에 대한 연구 (A Study on Oxygen Diffusion Characteristics According to Changes in Flow Field Shape of Polymer Electrolyte Membrane Fuel Cell Metallic Bipolar Plate for Building)

  • 박동환;손영준;최윤영;김민진;홍종섭
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.245-255
    • /
    • 2021
  • Various studies about metallic bipolar plates have been conducted to improve fuel cell performance through flow field design optimization. These research works have been mainly focused on fuel cells for vehicle, but not fuel cells for building. In order to reduce the price and volume of fuel cell stacks for building, it is necessary to apply a metallic flow field, In this study, for a metallic flow field applied to a fuel cell for building, the effect of a change in the flow field shape on the performance of a polymer electrolyte membrane fuel cell was confirmed using a model and experiments with a down-sizing single cell. As a result, the flow field using a metal foam outperforms the channel type flow field because it has higher internal differential pressure and higher reactants velocity in gas diffusion layer, resulting in higher water removal and higher oxygen concentration in the catalyst layer than the channel type flow field. This study is expected to contribute to providing basic data for selecting the optimal flow field for the full stack of polymer electrolyte membrane fuel cells for buildings.

옵셋전압을 저감시킨 실리콘 바이폴라 홀 IC 설계 (Design of HALL effect integrated circuit with reduced wolgate offset in silicon bipolar technology)

  • 김정언;홍창희
    • 전자공학회논문지A
    • /
    • 제32A권1호
    • /
    • pp.138-145
    • /
    • 1995
  • The offset voltage in silicon Hall plates is mainly caused by stress and strain in package, and by alignment in process. The offset voltage is appeared random for condition change with time in the factory, is non-linearly changed with temperature. In this paper proposed new method of design of Hall IC, and methematicaly proved relation layout of chip of 90$^{\circ}$-shift-current Hall plate pair is matched with "Differentail to single ended Conversion amplifier." In the experiment, the offset voltage is reduced about 1/100 time than the original offset voltage.

  • PDF

성형 이력을 고려한 용융탄산염 연료전지용 쉴디드 슬롯 플레이트의 압축 및 굽힘 거동 분석 (Compressive and Bending Behaviors of the Shielded Slot Plate Considering Forming Effect for Fuel Cell Application)

  • 이창환;양동열;강동우;장인갑;이태원
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.341-347
    • /
    • 2012
  • The metallic bipolar plates of the molten carbonate fuel cell(MCFC) are composed of shielded slot plates and a center-plate. The shielded slot plates support the center-plate and the membrane electrode assembly. Compressive forces are applied to the shielded slot plate in order to increase the contact area between shielded slot plates and the membrane electrode assembly (MEA). In the design of the shielded slot plate, it is necessary to predict the mechanical behavior of the shielded slot plate. The shielded slot plates are manufactured by a three-stage forming process consisting of slitting, preforming and the final forming process. The mechanical behavior of the shielded slot plate is largely affected by the forming process. In this study, the simulation of the three-stage forming process was used to predict the mechanical behavior of the shielded slot plate. The present simulation approach showed good agreements with the experimental results.

고분자 전해질 연료전지 매니폴드의 열유동 특성에 관한 수치적 연구 (Numerical Study on the Thermal and Flow Characteristics of Manifold Feed-Stream in Polymer Electrolyte Fuel Cells)

  • 정혜미;엄석기;손영준;박정선;이원용;김창수
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.41-52
    • /
    • 2005
  • The effects of internal manifold designs on the reactants feed-stream in Polymer Electrolyte Fuel Cells [PEFCs] is studied to figure out flow and thermal distribution patterns over an entire fuel cell stack. Reactants flows are modeled either laminar of turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-deter-mined for computational analysis. In this work, numerical models for reactants feed-stream In the PEFC manifolds are classified Into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also Investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique Is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain Information on the optimal design and operation of PEFC systems.

  • PDF

Six sigma 기법을 이용한 PEMFC Cathode 유로설계 최적화 (Optimization of Cathode Flow Field Design for a PEMFC with Six Sigma Technique)

  • 김선회
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.492-498
    • /
    • 2009
  • Six sigma methode was applied for optimization of flow field design of a proton exchange membrane fuel cell (PEMFC). The optimization between number of channel and channel/rib width was suggested in this paper with six sigma method. With the help of six sigma design of experiment (DOE) the number of experiments may be reduced dramatically. The fuel cell channel design optimization with results of these experiments with a 100 $cm^2$ serpentine flow field indicates a optimization data for a given constant operating conditions.

Thermal and Flow Analysis in a Proton Exchange Membrane Fuel Cell

  • Jung, Hye-Mi;Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1358-1370
    • /
    • 2003
  • The effects of anode, cathode, and cooling channels for a Proton Exchange Membrane Fuel Cell (PEMFC) on flow fields have been investigated numerically. Continuous open-faced fluid flow channels formed in the surface of the bipolar plates traverse the central area of the plate surface in a plurality of passes such as a serpentine manner. The pressure distributions and velocity profiles of the hydrogen, air and water channels on bipolar plates of the PEMFC are analyzed using a two-dimensional simulation. The conservation equations of mass, momentum, and energy in the three-dimensional flow solver are modified to include electro-chemical characteristics of the fuel cell. In our three-dimensional numerical simulations, the operation of electro-chemical in Membrane Electrolyte Assembly (MEA) is assumed to be steady-state, involving multi-species. Supplied gases are consumed by chemical reaction. The distributions of oxygen and hydrogen concentration with constant humidity are calculated. The concentration of hydrogen is the highest at the center region of the active area, while the concentration of oxygen is the highest at the inlet region. The flow and thermal profiles are evaluated to determine the flow patterns of gas supplied and cooling plates for an optimal fuel cell stack design.