• Title/Summary/Keyword: Biphenyl

Search Result 484, Processing Time 0.026 seconds

Biodegradation of Biphenyl by Sphingbium yanoikuyae BK-10 (Biphenyl의 Sphingobium yanoikuyae BK-10에 의한 분해 특성)

  • Lee Jung-Bok;Kim Dong-Geol;Choi Chung-Sig;Sohn Ho-Yong;Kim Jang-Eok;Kwon Gi-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.174-179
    • /
    • 2006
  • Bacterium capable of using biphenyl as a sole source of carbon and energy were isolated from soil, and based on the results of 16S rDNA sequence, strain BK10 identified as a Sphingobium yanoiktiyae. The optimum cultural conditions were as follows; $NH_4NO_3$ 1g, $K_2HPO_4$ 1g, $MgSO_4{\cdot}7H_2O$ 0.5g, $CaCO_3$ 0.2 g per 1 liter of distilled water. The Sphingobium yanoikuyae BK10 strain was completely utilized biphenyl in mineral salt media containing biphenyl at concentration 500 $\mu$g/ml of biphenyl as a sole carbon and energy source within 48 hours. Optimumal pH and temperature for biphenyl degradation and cell growth of strains were 6.0$\sim$8.0 and 20$\sim$50$^{\circ}C$, respectively. Especially, at 30$^{\circ}C$, cell-growth were higher than other temperature. Cell grown on biphenyl has been shown to have a higher removal rate for biphenyl than grown on sucrose. This study shows that Sphingobium yanoikuyae BK10 strain had a high biodegradation capability of biphenyl and can be simulate a candidate compounds the bioremediation of PCBs (Polychlorinated biphenyl) contaminant soil and water.

Characterization of biphenyl biodegradation, and regulation of iphenyl catabolism in alcaligenes xylosoxydans

  • Lee, Na-Ri;On, Hwa-Young;Jeong, Min-Seong;Kim, Chi-Kyung;Park, Yong-Keun;Ka, Jong-Ok;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.141-148
    • /
    • 1997
  • Alcaligenes xylosoxydans strain SMN3 capable of utilizing biphenyl grew not only on phenol, and benzoate, but also on salicylate. Catabolisms of biphenyl and salicylate appear to be interrelated since benzoate is a common metabolic intermediate of these compounds. Enzyme levels in the excatechol 2. 3-dioxygenas which is meta-cleavage enzyme of catechol, but did not induce catechol 1, 2-dioxygenase. All the oxidative enzymes of biphenyl and 2, 3,-dihydroxybiphenyl (23DHBP) were induced when the cells were grown on biphenyl and salicylate, respectively. Biphenyl and salicylate could be a good inducer in the oxidation of biphenyl and 2, 3-dihydroxybiphenyl. The two enzymes for the degradation of biphenyl and salicylate were induced after growth on either biphenyl or salicylate, suggesting the presence of a common regulatory element. However, benzoate could not induce the enzymes responsible for the oxidation of these compounds. Biphenyl and salicylate were good inducers for indigo formation due to the activity of biphenyl dioxygenase. These results suggested that indole oxidation is a property of bacterial dioxygenase that form cis-dihydrodiols from aromatic hydrocarbon including biphenyl.

  • PDF

Isolation and Identification of a Biphenyl-degrading Bacterium, Pseudomonas sp. DS-94 (Biphenyl 분해 미생물 Pseudomonas sp. DS-94의 분리 및 동정)

  • Lee, Dae-Sung;Jeong, Seong-Yun
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1391-1396
    • /
    • 2010
  • Three biphenyl-degrading microorganisms were isolated from polluted soil samples in Sasang-gu, Busan. Among them, isolate DS-94 showing the strong degrading activity was selected. The morphological, physiological, and biochemical characteristics of DS-94 were investigated by API 20NE and other tests. This bacterium was identified as the genus Pseudomonas by 16S rDNA sequencing and designated as Pseudomonas sp. DS-94. The optimum temperature and pH for the growth of Pseudomonas sp. DS-94 were $25^{\circ}C$ and pH 7.0, respectively. This isolate could utilize biphenyl as sole source of carbon and energy. Biphenyl-degrading efficiency of this isolate was measured by HPLC analysis. As a result of biological biphenyl-degradation at high biphenyl concentration (500 mg/L), biphenyl-removal efficiency by this isolate was 73.5% for 7 days.

Extradiol Cleavage of Two-ring Structures of Biphenyl and Indole Oxidation by Biphenyl Dioxygenase in Commamonas Acidovorans

  • On, Hwa-Young;Lee, Na-Ri;Kim, Young-Chang;Kim, Chi-Kyung;Kim, Young-Soo;Park, Yong-Keun;Ka, Jong-Ok;Lee, Ki-Sung;Min, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.264-269
    • /
    • 1998
  • Commamonas acidovorans SMN4 showed wide growth substrate spectra for various aromatic hydrocarbons. Strain SMN4 was able to grow on biphenyl producing a meta-cleavage compound, yellow 2-hydroxy-6-oxophenylhexa-2,4-dienoic acid with a spray of 2,3-dihydroxybiphenyl, while it also grew on catechol, developing yellow 2- hydroxymucoic semialdehyde with a spray of 100 mM catechol. Thus these results indicate that two-ring structures of biphenyl were cleaved by meta-mode in upper and lower pathways. Strain SMN4 metabolized various substituted biphenyl compounds and xylene to the corresponding benzoate derivatives through oxidation of the ring structures. It was clearly shown that biphenyl can be a common inducer in the oxidation of biphenyl and 2,3-dihydroxybiphenyl. Various compounds were examined for their suitability to serve as substrates for indole oxidation, indicating that biphenyl, benzoate, and succinate are quite good inducers of indigo production due to the activity of biphenyl dioxygenase. This results suggest that indigo formation is by means of the combined activities of biphenyl dioxygenase and tryptophanase.

  • PDF

The Intumescent Flame Retardant Mechanism of Red-phosphorus Containing Ortho-Cresol Novolac / Biphenyl Epoxy Composites (적인을 포함한 Ortho-Cresol Novolac/Biphenyl 에폭시 복합재료의 발포성 난연 기구)

  • 김윤진;강신우;유제홍;김익흠;서광석
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.623-633
    • /
    • 2002
  • The flame retardant and thermal properties of ortho-cresol novolac (OCN) and biphenyl epoxy blends containing red-phosphorus were investigated. For five types of compounds designed with the volume ratio of OCN and biphenyl epoxy, thermal properties were analysed by TGA or DTC, and flame retardancy effectiveness was estimated through UL-94V test. While the flame retardant and thermal properties were improved with the content of filler and red-phosphorus, the excessive amount of red-phosphorus caused to deteriorate those properties. Using the blends of OCN/biphenyl rather than pure OCN or biphenyl epoxy as a matrix the flame retardancy of composites could be improved by the synergic effects of high thermal resistance of OCN and intumescent property of biphenyl. The flame retardant me chanism of epoxy compound containing red-phosphorus could be thought of the heat-insulating effect of intumescent char-layer formed in the surface of composites.

Study on the Toxicities of Polychlorinated Biphenyls, Phenol and Biphenyl (Polychlorinated Biphenyls, Phenol 및 Biphenyl의 독성학적 연구)

  • 홍사욱;정규혁
    • Environmental Analysis Health and Toxicology
    • /
    • v.1 no.1
    • /
    • pp.61-70
    • /
    • 1986
  • The effect of polychlorinated biphenyls (PCB), phenol and biphenyl on the body, liver and kidney weights, and the activity of $\delta$-aminolevulinic acid dehydratase (ALAD), and the contents of microsomal cytochrome P-450, and hematocrit, TBAvalue. PCB (200 mg/kg), phenol (200 mg/kg), biphenyl (200 mg/kg), and biphenyl (100 mg/kg) added phenol (100 mg/kg) was treated orally to Sprague-Dawley rats for 3 days. In all treated groups, the body weights were decreased, while the weights of liver and kidney were increased in comparison with that of control group. The activity of $\delta$-ALAD was increased and hematocrit was decreased in PCB treated group, on the contrary biphenyl treated group was appeared opposite direction. The contents of microsomal cytochrome P-450 and concentration of protein were increased in all treated group. In biphenyl treated group and phenol treated group, TBA value was increased in both groups.

  • PDF

Optimization of Biphenyl Chloromethylation Process

  • Pak, V.V.;Karimov, R.K.;Shakhidoyatov, Kh.M.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.707-710
    • /
    • 2000
  • Optimization of the biphenyl chloromethylation process with para-formaldehyde has been investigated in the presence of ZnCl$_2$with HCI gas by the Box-Wilson method of mathematical planning of experiment. The 4,4'- (dichloromethyl)-biphenyl yield dependence on the biphenyl para-formaldehyde ratio, temperature and reaction duration has been studied. A mathematical model of the process has been developed and optimal conditions for the biphenyl chloromethylation procedure has been determined.

  • PDF

Three Separate Pathways for the Initial Oxidation of Limonene, Biphenyl, and Phenol by Rhodococcus sp. Strain T104

  • Kim, Dockyu;Park, Min-Jung;Koh, Sung-Cheol;So, Jae-Seong;Kim, Eungbin
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • Rhodococcus sp. strain T104, which is able to grow on either biphenyl or limonene, was found to utilize phenol as sole carbon and energy sources. Furthermore, T104 was positively identified to possess three separate pathways for the degradation of limonene, phenol, and biphenyl. The fact that biphenyl and limonene induced almost the same amount of catechol 1,2-dioxygenase activity indicates that limonene can induce both upper and lower pathways for biphenyl degradation by T104.

Hydrodesulfurization of Dibenzothiophene by Sulfided $Ni-W/\gamma-Al_2O_3$ Catalyst (황화 $Ni-W/\gamma-Al_2O_3$ 촉매에 의한 Dibeenzothiophene의 수첨탈황반응)

  • 김경림;정지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.51-59
    • /
    • 1986
  • Hydrodesulfurization of dibenzothiophene (DBT) dissolved in n-heptane was studied over sulfided $Ni - W/\gamma - Al_2O_3$ catalyst at temperature ranges from 513 to 573 K and at pressure ranges from 20 to 60 x $10^5$ Pa. Hydrogenation of biphenyl (BP) and cyclohexylbenzene (CHB) observed in products were also run. The products were almost biphenyl and cyclohyxylbenzene, and the conversion of DBT was very sensitive to temperature. Concerning the products distribution while the formation of biphenyl decreased, the formation of cyclohexylbenzene increased in the range of high pressure. The reaction network was found to be sequential reaction which formed cyclohexybenzent through the intermediate of biphenyl. The disappearances of DBT and biphenyl were the first order with respect to DBT and biphenyl and their activation energys were 24.3 and 13.6 Kcal/mol, respectively.

  • PDF

Polychlorobiphenyl (PCB) 토양오염복원: PCB 제거 토양미생물들의 군집과 기능을 효과적으로 분석하는 신 genomics 방법개발에 관한 연구

  • Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.28-30
    • /
    • 2005
  • Because of high population diversity in soil microbial communities, it is difficult to accurately assess the capability of biodegradation of toxicant by microbes in soil and sediment. Identifying biodegradative microorganisms is an important step in designing and analyzing soil bioremediation. To remove non-important noise information, it is necessary to selectively enrich genomes of biodegradative microorganisms fromnon-biodegradative populations. For this purpose, a stable isotope probing (SIP) technique was applied in selectively harvesting the genomes of biphenyl-utilizing bacteria from soil microbial communities. Since many biphenyl-using microorganisms are responsible for aerobic PCB degradation In soil and sediments, biphenyl-utilizing bacteria were chosen as the target organisms. In soil microcosms, 13C-biphenyl was added as a selective carbon source for biphenyl users, According to $13C-CO_2$ analysis by GC-MS, 13C-biphenyl mineralization was detected after a 7-day of incubation. The heavy portion of DNA(13C-DNA) was separated from the light portion of DNA (12C-DNA) using equilibrium density gradient ultracentrifuge. Bacterial community structure in the 13C-DNAsample was analyzed by t-RFLP (terminal restriction fragment length polymorphism) method. The t-RFLP result demonstates that the use of SIP efficiently and selectively enriched the genomes of biphenyl degrading bacteria from non-degradative microbes. Furthermore, the bacterial diversity of biphenyl degrading populations was small enough for environmental genomes tools (metagenomics and DNA microarrays) to be used to detect functional (biphenyl degradation) genes from soil microbial communities, which may provide a significant progress in assessing microbial capability of PCB bioremediation in soil and groundwater.

  • PDF