• Title/Summary/Keyword: Biphasic Hammett and Br$\ddot{o}$nsted plots

Search Result 5, Processing Time 0.015 seconds

Significant Substituent Effects on Pyridinolysis of Aryl Ethyl Chlorophosphates in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1460-1464
    • /
    • 2014
  • The substituent effects on the pyridinolysis (XC5H4N) of Y-aryl ethyl chlorophosphates are investigated in acetonitrile at $35.0^{\circ}C$. The two strong ${\pi}$-acceptor substituents, X = 4-Ac and 4-CN in the X-pyridines, exhibit large positive deviations from the Hammett plots but little positive deviations from the Br$\ddot{o}$nsted plots. The substituent Y effects on the rates are really significant and the Hammett plots for substituent Y variations in the substrates invariably change from biphasic concave downwards via isokinetic at X = H to biphasic concave upwards with a break point at Y = 3-Me as the pyridine becomes less basic. These are interpreted to indicate a mechanistic change at the break point from a stepwise mechanism with a rate-limiting bond formation (${\rho}_{XY}$ = -6.26) for Y = (4-MeO, 4-Me, 3-Me) to with a rate-limiting leaving group expulsion from the intermediate (${\rho}_{XY}$ = +5.47) for Y = (4-Me, H, 3-MeO). The exceptionally large magnitudes of ${\rho}_{XY}$ values imply frontside nucleophilic attack transition state.

Kinetics and Mechanism of the Pyridinolysis of Diphenyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Dey, Nilay Kumar;Guha, Arun Kanti;Kim, Chan-Kyung;Lee, Bon-Su;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1797-1802
    • /
    • 2007
  • The kinetics and mechanism of the nucleophilic substitution reactions of diphenyl phosphinic (1) and thiophosphinic (2) chlorides with substituted X-pyridines are investigated kinetically in acetonitrile at 35.0 and 55.0 oC, respectively. A concerted mechanism with backside nucleophilic attack is proposed for the pyridinolysis of 1, on the basis of the linear Bronsted plot with the βX value of 0.68. In the case of the pyridinolysis of 2, the Hammett and Bronsted plots are biphasic concave upwards with the break point at 3- phenyl pyridine. These results indicate a change in mechanism from a concerted SN2(P) process with direct backside nucleophilic attack for less basic nucleophiles (X = 3-CN-3-Ph) to a stepwise process with frontside attack for more basic nucleophiles (X = 4-MeO-3-Ph). Apparent secondary inverse kinetic isotope effects with deuterated pyridine (C5D5N), kH/kD < 1, are observed for the pyridinolysis of 1 and 2.

Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Chlorothiophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3203-3207
    • /
    • 2012
  • The nucleophilic substitution reactions of diisopropyl chlorothiophosphate (5) with X-pyridines have been kinetically studied in MeCN at $35.0^{\circ}C$. The Hammett and Br$\ddot{o}$nsted plots for the substituent X variations in the nucleophiles show biphasic concave upwards with a break point at X = 3-Ph. The pyridinolysis rate of 5 exhibits great negative deviation from the Taft plot. A concerted $S_N2$ mechanism is proposed involving a change of the attacking direction of the X-pyridines from a frontside attack with the strongly basic pyridines to a backside attack with the weakly basic pyridines.

Kinetics and Mechanism of the Pyridinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2260-2264
    • /
    • 2012
  • The kinetics and mechanism of the pyridinolysis ($XC_5H_4N$) of dimethyl isothiocyanophosphate are investigated in acetonitrile at $55.0^{\circ}C$. The Hammett and Br$\ddot{o}$nsted plots for substituent X variations in the nucleophiles exhibit two discrete slopes with a break region between X = 3-Ac and 4-Ac. These are interpreted to indicate a mechanistic change at the break region from a concerted to a stepwise mechanism with a rate-limiting expulsion of the isothiocyanate leaving group from the intermediate. The relatively large ${\beta}x$ values imply much greater fraction of frontside nucleophilic attack TSf than that of backside attack TSb. The steric effects of the two ligands play an important role to determine the pyridinolysis rates of isothiocyanophosphates.

Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3587-3591
    • /
    • 2011
  • The reactions of O,O-diethyl Z-S-aryl phosphorothioates with X-benzylamines are kinetically investigated in dimethyl sulfoxide at $85.0^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}x$) and Br$\ddot{o}$nsted [log $k_2$ vs $pK_a$(X)] plots are biphasic concave downwards for substituent X variations in the nucleophiles with a break point at X = H. The signs of the cross-interaction constants (${\rho}xz$) are positive for both the strongly and weakly basic nucleophiles. Considerably great magnitude of ${\rho}xz$ (= 6.56) value is observed with the weakly basic nucleophiles, while ${\rho}xz$ = 0.91 with the strongly basic nucleophiles. Proposed reaction mechanism is a stepwise process with a rate-limiting leaving group expulsion from the intermediate involving a backside nucleophilic attack with the strongly basic nucleophiles and a frontside attack with the weakly basic nucleophiles. The kinetic results are compared with those of the benzylaminolysis of O,O-diphenyl Z-S-aryl phosphorothioates.