• 제목/요약/키워드: Biped robot

검색결과 274건 처리시간 0.029초

이족로봇의 경사면 균형 유지와 보행에 관한 연구 (A Study about Stable Walking and Balancing of Biped Robot in a Slope)

  • 오성남;윤동우;손영익;김갑일;임승철;강환일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.542-544
    • /
    • 2006
  • This paper aims to provide a way to improve dynamic stability of biped robots against undesirable disturbances and in a slope. By using an angular velocity sensor and an acceleration sensor on its waist, we can make a medium-sized biped robot walk stably in a slope against impulsive disturbances. In addition, it is possible for the robot to walk stably in an unknown slope. The measured signals from the sensor are used for compensating the reference angles of ankle, knee, and pelvis joints. Some experiments show that the stability of the robot is much enhanced by using cheat sensors and a simple algorithm. This work helps bided robots walk more stably in real environments.

  • PDF

이족 보행 로봇의 초기 자세에 따른 걸음새 해석에 관한 연구 (A Study on the Gait Analysis for Initial Posture of a Biped Robot)

  • 노경곤;정진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.301-303
    • /
    • 2001
  • This paper deals with the biped robot gait on changing the initial postures. Gait of a biped robot depends on the constraints of mechanical kinematics and initial posture. Also biped robot's dynamic walking stability is investigated by ZMP(Zero Moment Point). The path trajectory. with the knee joint bent like a human, is generated and applied with the above considerations. To decrease trajectory tracking error, in this paper, a new initial posture similar to bird's case is proposed and realized with the real robot.

  • PDF

Realization of biped walking robot

  • Ha, Tae-Sin;Kim, Joo-Hyung;Choi, Chong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.134.2-134
    • /
    • 2001
  • This paper treats the implementation of a statically stable control system for a biped walking robot with 10 degrees-of-freedom. Statically stable walking of a biped robot can be realized by keeping the center of mass (COM) inside the sole of the supporting foot (or feet) during single-support or double-support phases. We predetermined five static positions for walking based on the COM method. The positions can be represented by the length of the gait, the width between the feet, the height of the foot and two parameters in the hip movement. With the five parameters, we calculated the position trajectory. And we got the angular trajectories of 10 joints from the posit ion trajectory using the position tracking control and neural network. By tracking the angular trajectories, the robot can walk maintaining stability. We implemented walking of a biped robot throught the above ...

  • PDF

3차원 장애물에서의 이족보행로봇을 위한 이동경로계획 알고리즘의 설계 (A Design of Path Planning Algorithm for Biped Walking Robot in 3-D Obstacle Environment)

  • 민승기;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.576-580
    • /
    • 1997
  • This paper presents a path planning algorithm for biped walking robot in 3-D workspace. Since the biped walking robot can generate path on some 3-D obstacles that cannot generate path in case of mobile robot, we have to make a new path planning algorithms. A 3-D-to-2-D mapping algorithm is proposed and two kinds of path planning algorithms are also proposed. They make it easier to generate an efficient path for biped walking robot under given environment. Some simulation results are shown to prove the effectiveness of proposed algorithms.

  • PDF

RTOS와 R/C 서보 모터를 이용한 엔터테인먼트 이족 보행 로봇 설계 및 구현 (Design and Implementation of Entertainment Biped Robot using RTOS and R/C Servo Motor)

  • 김동진;김정기;기창두
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.998-1001
    • /
    • 2003
  • In this paper, a entertainment biped robot controlled by R/C servo motors is built using the embedded RTOS (Real Time Operating System). uC/OS-II V2.00 is used for RTOS and control algorithm of R/C servo motors is proposed based on uC/OS-II's preemptive and deterministic property without any extra PWM module. The realized biped robot has 19 DOF, and a board 80C196KC as main CPU. To verify the proper walking process, ZMP(Zero Moment Point) theory is applied and ADAMS is used for simulation.

  • PDF

이족 휴머노이드 로봇의 안정적인 보행패턴 분석: 퍼지 모델링 접근방법 (Analysis of Stable Walking Pattern of Biped Humanoid Robot: Fuzzy Modeling Approach)

  • 김동원;박귀태
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권6호
    • /
    • pp.376-382
    • /
    • 2005
  • In this paper, practical biped humanoid robot is presented, designed, and modeled by fuzzy system. The humanoid robot is a popular research area in robotics because of the high adaptability of a walking robot in an unstructured environment. But owing to the lots of circumstances which have to be taken into account it is difficult to generate stable and natural walking motion in various environments. As a significant criterion for the stability of the walk, ZMP (zero moment point) has been used. If the ZMP during walking can be measured, it is possible for a biped humanoid robot to realize stable walking by a control method that makes use of the measured ZMP. In this study, measuring the ZMP trajectories in real time situations throughout the whole walking phase on the flat floor and slope are conducted. And the obtained ZMP data are modeled by fuzzy system to explain empirical laws of the humanoid robot. By the simulation results, the fuzzy system can be effectively used to model practical humanoid robot and the acquired trajectories will be applied to the humanoid robot for the human-like walking motions.

FPE 방식을 활용한 이족 로봇 균형 유지 3차원 시뮬레이션 연구 (3D Simulation Study of Biped Robot Balance Using FPE Method)

  • 장태호;김영식;류봉조
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.815-819
    • /
    • 2018
  • 본 논문에서는 Foot Placement Estimator (FPE)를 사용하여 point foot을 갖는 이족 로봇의 3차원 시뮬레이션을 진행하고 이족로봇의 균형유지를 연구하였다. FPE 방법은 에너지 보존에 근거한 제어 방법으로서 보행 중인 로봇의 모든 에너지가 위치 에너지로 변환되는 지점에 로봇이 발을 디뎌 몸체가 넘어지지 않고 균형을 유지하며 이동하도록 하는 제어방법이다. 본 연구에서는 로봇이 이동하지는 않고 제자리에서 균형을 유지하며 서 있는 시뮬레이션을 진행하였다. 이를 위해 point foot을 갖는 6자유도 이족 로봇을 모델링하였으며 바닥과의 접촉 및 마찰 환경을 구현하였다. 로봇의 무게는 1kg이며 지면과 무게 중심점과의 거리는 1m로, 무게중심점은 로봇 몸체의 정 중앙에 위치하도록 설계하였다. 다음으로 로봇 몸체의 각속도와 직선속도 그리고 무게 중심점의 높이로 부터 FPE 지점을 계산하고 로봇이 해당 지점을 디뎌 균형을 유지하게 끔 하였다. 몸체의 초기 각도를 $5^{\circ}$, $-5^{\circ}$로 변화시키며 시뮬레이션 한 결과, 모든 초기 조건에서 로봇이 쓰러지지 않고 자세의 균형을 유지하며 서 있는 것을 확인할 수 있었다.

Trajectory Generation and Dynamic Control of Planar Biped Robots With Curved Soles

  • Yeon Je-Sung;Kwon O-Hung;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.602-611
    • /
    • 2006
  • This paper proposes a locomotion pattern and a control method for biped robots with curved soles. First, since the contact point of a supporting leg may arbitrarily move back and forth on the ground, we derived the desired trajectory from a model called the Moving. Inverted Pendulum Model (MIPM) where the Zero Moment Point (ZMP) exists at the supporting point and can be moved intentionally. Secondly, a biped robot with curved soles is an under-actuated system since the supporting point contacting with a point on the ground has no actuator during the single supporting phase. Therefore, this paper proposes a computed-torque control for this under-actuated system using decoupled dynamic equations. A series of computer simulations with a 7-DOF biped robot with curved soles shows that the proposed walking pattern and control method are effective and allow the biped robot to walk fast and stably, and move more like human beings. Also, it is shown that the curved sole shape has superior energy consumption compared to flat soles, and greater efficiency in ascending and descending the stairs.

중력보상기를 적용한 이족보행로봇 연구 (A study on the Biped Walking Robot applying a Gravity Compensator)

  • 최형식;나원현;김동호;추우헌
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.55-62
    • /
    • 2010
  • In this paper, the structure of a new gravity compensator was studied, and the biped walking robot applying a gravity compensator was presented to improve the performance of the robot. The robot had 13 degree of freedom and is driven by the joint actuator with the gravity compensator. Each leg of the robot is composed of six joints three joints at the hip, a joint at the knee, and two joints at the ankle. The leg of the robot was designed to support 74kg weight including 30kg payload thanks to the gravity compensator. The performance of the robot was presented by reducing the payload applied to the leg joint of the robot thanks to the gravity compensator.

이족로봇의 선형모델결정과 제어에 관한 연구 (A Study on the Determination of Linear Model and Linear Control of Biped Robot)

  • 박인규;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF