• Title/Summary/Keyword: Biped Control

Search Result 180, Processing Time 0.028 seconds

Realization of Sensory-Based Biped Walking

  • Lim, Hum-Ok;Yu, Ogura;Takanishi, Atsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.197-202
    • /
    • 2003
  • This paper describes realtime walking based on sensory information. In this study, a biped robot having a trunk is considered. The motion of the trunk balances the whole body of the biped robot while the legs locomotes on the ground. How to calculate the motion of the trunk is proposed using the ZMP concept. Also, an online walking pattern is discussed which is generated in realtime on the basis of walking parameters selected by visual and auditory sensors. In order to realize biped walking, we have constructed a forty-three degrees of freedom biped robot, WABIAN-RV (WAseda BIped humANoid robot-Revised V). Its height is 1.89[m] and its total weight is 131.4[kg]. Various walking experiments using WABIAN-RV are conducted on the plane, and the validity of its mechanism and control is verified.

  • PDF

Biped Walking of a Humanoid Robot for Argentina Tango

  • Ahn, Doo-Sung
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.52-58
    • /
    • 2016
  • The mechanical design for biped walking of a humanoid robot doing the Argentina Tango is presented in this paper. Biped walking has long been studied in the area of robotic locomotion. The aim of this paper is to implement an Argentina Tango dancer-like walking motion with a humanoid robot by using a trajectory generation scheme. To that end, this paper uses blending polynominals whose parameters are determined based on PSO (Particle Swarm Optimization) according to conditions that make the most of the Argentina Tango's characteristics. For the stability of biped walking, the ZMP (Zero Moment Point) control method is used. The feasibility of the proposed scheme is evaluated by simulating biped walking with the 3D Simscape robot model. The simulation results show the validity and effectiveness of the proposed method.

Walking of a Planar Biped with an Intuitive Method (직관적인 방법에 의한 평면형 2족 로봇의 보행)

  • Chung, Goo-Bong
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • This work deals with an intuitive method for a planar biped to walk, which is named Relative Trajectory Control (RTC) method. A key feature of the proposed RTC method is that feet of the robot are controlled to track a given trajectory, which is specially designed relative to the base body of the robot. The trajectory of feet is presumed from analysis of the walking motion of a human being. A simple method to maintain a stable posture while the robot is walking is also introduced in RTC method. In this work, the biped is modeled as a free-floating robot, of which dynamic model is obtained in the Cartesian space. Using the obtained dynamic model, the robot is controlled by a model-based feedback control scheme. The author shows a preliminary experimental result to verify that the biped robot with RTC method can walk on the even or uneven surfaces.

  • PDF

Control System Design of Pelvis Platform for Biped Walking Stability (이족보행 안전성을 위한 골반기구의 제어시스템 설계)

  • Kim, Su-Hyeon;Yang, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.306-314
    • /
    • 2009
  • The pelvis platform is the mechanical part which accomplishes the activities of diminishing the disturbances from the lower body and maintaining a balanced posture. When a biped robot walks, a lot of disturbances and irregular vibrations are generated and transmitted to the upper body. As there are some important machines and instruments in the upper body or head such as CPU, controller units, vision system, etc., the upper part should be isolated from disturbances or vibrations to functions properly and finally to improve the biped stability. This platform has 3 rotational degrees of freedom and is able to maintain balanced level by feedback control system. Some sensors are fused for more accurate estimation and the control system which integrates synchronization and active filtering is simulated on the virtual environment.

Self-Recurrent Neural Network Based Sliding Mode Control of Biped Robot (이족 로봇을 위한 자기 회귀 신경 회로망 기반 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1860-1861
    • /
    • 2006
  • In this paper, we design a robust controller of biped robot system with uncertainties, using recurrent neural network. In our proposed control system, we use the self-recurrent wavelet neural network (SRWNN). The SRWNN makes up for the weak points in wavelet neural network(WNN). While the WNN has fast convergence ability, it dose not have a memory. So the WNN cannot confront unexpected change of the system. However, the SRWNN, having advantage of WNN such as fast convergence, can easily encounter the unexpected change of the system. For stable walking control of biped robot, we use sliding mode control (SMC). Here, uncertainties are predicted by SRWNN. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out computer simulations with a biped robot model to verify the effectiveness of the proposed control system,.

  • PDF

A Gait Implementation of a Biped Robot Based on Intelligent Algorithm (지능 알고리즘 기반의 이족 보행로봇의 보행 구현)

  • Kang Chan-Soo;Kim Jin-Geol;Noh Kyung-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1210-1216
    • /
    • 2004
  • This paper deals with a human-like gait generation of a biped robot with a balancing weight of an inverted pendulum type by using genetic algorithm. The ZMP (Zero Moment Point) is the most important index in a biped robot's dynamic walking stability. To perform a stable walking of a biped robot, a balancing motion is required according to legs' trajectories and a desired ZMP trajectory. A dynamic equation of the balancing motion is nonlinear due to an inverted pendulum type's balancing weight. To solve the nonlinear equation by the FDM (Finite Difference Method), a linearized model of equation is proposed. And GA (Genetic Algorithm) is applied to optimize a human-like balancing motion of a biped robot. By genetic algorithm, the index of the balancing motion is efficiently optimized, and a dynamic walking stability is verified by the ZMP verification equation. These balancing motion are simulated and experimented with a real biped robot IWR-IV. This human-like gait generation will be applied to a humanoid robot, at future work.

Design and Control of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (재활훈련용 이쪽보행 RGO 로봇의 Dynamic PLS 설계와제어 - <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents a design and a control of a biped walking AGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a biped walking AGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking AGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking RGO-robot.

  • PDF

Design and Control of a Dynamic PLS of the Biped Walking RGO for a Trainning of Rehabilitation considering Human Vibration (인체진동을 고려한 재활훈련용 이족보행 RGO 보조기의 생체역학적 해석 <인체진동 응력해석과 FEM을 중심으로>)

  • 장대진;김명회;양현석;백윤수;박영필;박창일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.752-759
    • /
    • 2002
  • This paper presented a design and a control of a biped walking RGO and walking simulation by this system. The biped walking RGO was distinguished from the other one by which had a very light-weight and a new RGO type with 12-servo motors. The vibration evaluation of the dynamic PLS on the biped walking RGO was used to access by the 3-axis accelerometer with a low frequency vibration for the spinal cord injuries. The gait of a biped walking RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by a ZMP (Zero Moment Point) of the biped walking RGO. It was designed according to a human wear type and was able to accomodate itself to a human environments. The joints of each leg were adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of the dynamic PLS and the analysis study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to recover effectively with a biped walking RGO.

  • PDF

Stable Biped Walking by Trunk and Waist Motion

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.85.2-85
    • /
    • 2002
  • If a biped humanoid robot walks stably on even and uneven planes like a human being, it should have a control system capable of compensating for moments generated by motions of its lower-limbs, upper-limbs and head. In this paper, a compensatory motion control method is described for the stability of biped humanoid robots. This control method calculates the combined motion of the trunk and the waist that cancels the generated moments by using an iteration algorithm. During the biped walking, the combined motion is employed only for stability while the motion of the lower-limbs is used only for locomotion. This method is useful for not only a steady walking but also a transient walking. The e...

  • PDF

A Study on the Application of Sliding Mode Control Algorithm to the Biped Robot System (2족 보행 로봇트 시스템에 대한 슬라이딩 모드 제어알고리즘의 적용에 관한 연구)

  • 한규범;백윤수;양현석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.323-329
    • /
    • 1994
  • In the systems such as walking robots or high speed operating manipulators, the effect of nonlinear terms is important and can not be neglected. Therefore the application of linear control law to such systems is inadequate. Moreover, because of the mathematical modeling errors the systems may become unstable. In this study, we designed a nonlinear controller with sliding mode scheme, which is robust to the modeling errors and applied this control algorithm to the 5 DOF biped robot system. Throught the computer simulations, we examined walking characteris and walking stability of the 5 DOF biped robot system.

  • PDF