• Title/Summary/Keyword: Biosynthetic genes

Search Result 238, Processing Time 0.036 seconds

Identification of the Phenalamide Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675

  • Park, Suhyun;Hyun, Hyesook;Lee, Jong Suk;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1636-1642
    • /
    • 2016
  • Phenalamide is a bioactive secondary metabolite produced by Myxococcus stipitatus. We identified a 56 kb phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675 by genomic sequence analysis and mutational analysis. The cluster is comprised of 12 genes (MYSTI_04318- MYSTI_04329) encoding three pyruvate dehydrogenase subunits, eight polyketide synthase modules, a non-ribosomal peptide synthase module, a hypothetical protein, and a putative flavin adenine dinucleotide-binding protein. Disruption of the MYSTI_04324 or MYSTI_04325 genes by plasmid insertion resulted in a defect in phenalamide production. The organization of the phenalamide biosynthetic modules encoded by the fifth to tenth genes (MYSTI_04320-MYSTI_04325) was very similar to that of the myxalamid biosynthetic gene cluster from Stigmatella aurantiaca Sg a15, as expected from similar backbone structures of the two substances. However, the loading module and the first extension module of the phenalamide synthase encoded by the first to fourth genes (MYSTI_04326-MYSTI_04329) were found only in the phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675.

The Ribostamycin Biosynthetic Gene Cluster in Streptomyces ribosidificus: Comparison with Butirosin Biosynthesis

  • Subba, Bimala;Kharel, Madan Kumar;Lee, Hei Chan;Liou, Kwangkyoung;Kim, Byung-Gee;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.90-96
    • /
    • 2005
  • A cluster of genes for ribostamycin (Rbm) biosynthesis was isolated from Streptomyces ribosidificus ATCC 21294. Sequencing of 31.892 kb of the genomic DNA of S. ribosidificus revealed 26 open reading frames (ORFs) encoding putative Rbm biosynthetic genes as well as resistance and other genes. One of ten putative Rbm biosynthetic genes, rbmA, was expressed in S. lividans TK24, and shown to encode 2-deoxy-scyllo-inosose (DOI) synthase. Acetylation of various aminoglycoside-aminocyclitol (AmAcs) by RbmI confirmed it to be an aminoglycoside 3-N-acetyltransferase. Comparison of the genetic control of ribostamycin and butirosin biosynthesis pointed to a common biosynthetic route for these compounds, despite the considerable differences between them in genetic organization.

Non-Aflatoxigenicity of Commercial Aspergillus oryzae Strains Due to Genetic Defects Compared to Aflatoxigenic Aspergillus flavus

  • Tao, Lin;Chung, Soo Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1081-1087
    • /
    • 2014
  • Aspergillus oryzae is generally recognized as safe, but it is closely related to A. flavus in morphology and genetic characteristics. In this study, we tested the aflatoxigenicity and genetic analysis of nine commercial A. oryzae strains that were used in Korean soybean fermented products. Cultural and HPLC analyses showed that none of the commercial strains produced detectable amount of aflatoxins. According to the molecular analysis of 17 genes in the aflatoxin (AF) biosynthetic pathway, the commercial strains could be classified into three groups. The group I strains contained all the 17 AF biosynthetic genes tested in this study; the group II strains deleted nine AF biosynthetic genes and possessed eight genes, including aflG, aflI, aflK, aflL, aflM, aflO, aflP, and aflQ; the group III strains only had six AF biosynthetic genes, including aflG, aflI, aflK, aflO, aflP, and aflQ. With the reverse transcription polymerase chain reaction, the group I A. oryzae strains showed no expression of aflG, aflQ and/or aflM genes, which resulted in the lack of AF-producing ability. Group II and group III strains could not produce AF owing to the deletion of more than half of the AF biosynthetic genes. In addition, the sequence data of polyketide synthase A (pksA) of group I strains of A. oryzae showed that there were three point mutations (two silent mutations and one missense mutation) compared with aflatoxigenic A. flavus used as the positive control in this study.

Isolation of Cryptic Polyene Hydroxylase Gene in Rare Actinomycetes via Polyene-specific Degenerate PCR. (Polyene 특이적인 PCR에 의한 희소 방선균 유래 Cryptic Polyene Hydroxylase 유전자의 분리)

  • 박현주;명지선;박남실;한규범;김상년;김응수
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.282-285
    • /
    • 2004
  • The polyene antibiotics including nystatin, pimaricin, amphotericin and candicidin are a family of most promising antifungal polyketide compounds, typically produced by rare actinomycetes species. The biosynthetic gene clusters for these polyenes have been previously investigated, revealing the presence of highly homologous biosynthetic genes among polyene-producers such as polyketide synthase (PKS) and cytochrome P450 hydroxylase (CYP) genes. Based on amino acid sequence alignment among actinomycetes CYP genes, the highly-conserved regions specific for only polyene CYP genes were identified and chosen for degenerate PCR primers, followed by the PCR-screening with various actinomycetes genomic DNAs. Among tested several polyene non-producing actinomycetes strains, Pseudonorcardia autotrophica strain was selected based on the presence of PCR product with polyene-specific CYP gene primers, and then confirmed to contain a cryptic novel polyene hydroxylase gene in the chromosome. These results suggest that the polyene-specific hydroxylase gene PCR should be an efficient way of screening and isolating potentially-valuable cryptic polyene antibiotic biosynthetic genes from various microorganisms including rare actinomycetes.

Method for Cloning Biosynthetic Genes of Secondary Metabolites Including Deoxysugar from Actinomycetes

  • Sohng, Jae-Kyung;Oh, Tae-Jin;Kim, Chun-Gyu
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.475-483
    • /
    • 1998
  • Many antibiotics contain partially deoxygenated sugar components that are usually essential for biological activity, affinity, structural stability, and solubility of antibiotics. Gene probes of the biosynthetic genes related with the deoxysugar were obtained from PCR. Primers were designed from the conserved peptide sequences of the known dTDP-D-glucose 4,6-dehydratases, which are the key step enzymes in the biosynthesis of deoxysugar. The primers were applied to amplify parts of dehydratase genes to 27 actinomycetes that produce the metabolites containing deoxysugar as structural constituents. About 180 and 340 bp DNA fragments from all of the actinomycetes were produced by PCR and analyzed by Southern blot and DNA sequencing. The PCR products were used as gene probes to clone the biosynthetic gene clusters for the antibiotic mithramycin, rubradirin, spectinomycin, and elaiophyrin. This method should allow for detecting of the biosynthetic gene clusters of a vast array of secondary metabolites isolated from actinomycetes because of the widespread existence of deoxysugar constituents in secondary metabolites.

  • PDF

Regulatory Mechanism of Lysine Biosynthetic Genes in Escherichia coli

  • Joe, Min-Ho;Mun, Hyo-Young;Hong, Mi-Ju;Kim, Seong-Jun;Park, Young-Hoon;Rhee, Sang-Ki;Kwon, Oh-Suk
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.236-241
    • /
    • 2004
  • In Escherichia coli, L-lysine biosynthetic pathway is composed of nine enzymatic reactions. It has been well established that most of the lysine biosynthetic genes are regulated by the lysine availability, even though they are all scattered around the chromosome without forming any multigenic operon structure. However, no transcriptional regulatory mechanism has been identified except for the activation of lysA gene by the LysR. In this study, changes in transcriptome profiles of wild type cells and lysR deletion mutant cells grown in the absence or presence of lysine were investigated by using DNA microarray technique. Microarray data analysis revealed three groups of genes whose expression varies depending on the availability of lysine or LysR or both. To further examine the regulatory patterns of lysine biosynthetic genes, lacZ operon fusions were constructed and their expression was measured under various conditions. Obtained results strongly suggest that there is an additional regulatory mechanism which senses the lysine availability and coordinates gene expression.

  • PDF

Differential Expression of Isoflavone Biosynthetic Genes in Soybean During Germination (콩 발아기간 중 isoflavone 생합성 유전자 발현 변이)

  • Lim, Jin-Su;Kim, Seo-Young;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.365-374
    • /
    • 2021
  • Soybean isoflavones are essential secondary metabolites synthesized through the phenylpropanoid pathway, and they play vital roles in human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Therefore, the present study analyzed the content of isoflavone and expression of six key genes involved in its biosynthesis (i.e., CHS6, HID, IF7GT, IF7MaT, GmIMaT1, and GmIMaT3) during soybean seed germination. Isoflavone content was quantified using high-performance liquid chromatography, and isoflavone biosynthetic gene expression was analyzed using quantitative real-time PCR. Two cultivars, namely 'Daepung2ho' and 'Pungsannamulkong', which are high- and low-isoflavone cultivars, respectively, were used. Isoflavone accumulation gradually increased with the progression of the germination period. As such, malonyl glucosides accounted for over 80% of the total content, whereas acetyl glucosides were present at trace amounts. Transcriptional analysis of isoflavone biosynthetic genes demonstrated expression patterns parallel to isoflavone content; however, there was no clear correlation between isoflavone content and gene expression. Moreover, most isoflavone biosynthetic genes showed different expression patterns depending on the individual gene or genotypes. Among the tested genes, HID showed consistently higher expression, except at 3 days after germination, and its expression was upregulated in 'Daepung2ho' but downregulated in 'Pungsannamulkong'. In addition, all tested genes exhibited different expression patterns between cotyledons and hypocotyls and responded differently to the germination period. These findings suggest that the expression levels of isoflavone biosynthetic genes are not consistent with the germination period and appear to be genotype-dependent.

Identification of 2-Deoxy-scyllo-inosose Synthase in Aminoglycoside Producer Streptomyces

  • Kharel, Madan-Kumar;Subba, Bimala;Lee, Hei-Chan;Liou, Kwang-Kyoung;Woo, Jin-Suk;Kim, Dong-Hwan;Moon, Young-Ho;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.828-831
    • /
    • 2003
  • Although most of the DOS containing aminoglycosides are produced by Streptomyces, very little information is available about their biosynthesis. In the present paper, we report a method to isolate DOI synthase, a key enzyme in the biosynthesis of DOS, from aminoglycoside producer Streptomyces. PCR primers based on conserved region of DOI synthases were specific and reliable for the isolation of the biosynthetic genes of DOS containing aminoglycosides or the screening of the aminoglycoside producers. The use of DOI synthase as a probe could save both time and cost of cloning aminoglycoside biosynthetic genes.

Screening of Myxobacteria Carrying Tubulysin Biosynthetic Genes

  • Hyun, Hyesook;Choi, Juo;Kang, Daun;Kim, Yungpil;Lee, Pilgoo;Chung, Gregory J.Y.;Cho, Kyungyun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.32-38
    • /
    • 2021
  • Tubulysins are a group of secondary metabolites produced by myxobacteria that inhibit the function of the eukayotic cytoskeleton. We developed a pair of PCR primers that specifically amplified tubulysin biosynthetic genes. Using these primers, eight out of the eighty-one strains of myxobacteria belonging to the Cystobacteraceae family that harbored putative tubulysin biosynthetic genes were screened through PCR analysis. The selected strains included two Archangium gephyra, two Stigmatella sp., two Vitiosangium cumulatum, and two unidentified myxobacteria. LC-MS analysis of the culture extracts from the selected strains revealed that A. gephyra KYC4066 produced putative tubulysin A and B.

Global Regulators to Activate Silent Biosynthetic Gene Clusters

  • Shim, Sang Hee
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.183-190
    • /
    • 2020
  • Genome mining has recently emerged as a powerful strategy to discover novel microbial secondary metabolites. However, more than 50% of biosynthetic gene clusters are not transcribed under standardized laboratory culture condition. Several methods have been applied to activate silent biosynthetic gene clusters in the microbes so far. Among the regulatory systems for production of secondary metabolites, global regulators, which affect transcription of genes through regulatory cascades, typically govern the production of small molecules. In this review, global regulators to affect production of microbial secondary metabolites were discussed.