• Title/Summary/Keyword: Biosorbents

Search Result 25, Processing Time 0.03 seconds

INORGANIC AND BIO-MATERIALS IN THE REMOVAL/SPECIATION OF RADIOCESIUM AND RADIOSTRONTIUM : AN OVERVIEW

  • Tiwari, Diwakar;Prasad, S.K.;Yang, Jae-Kyu;Choi, Bong-Jong;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.106-125
    • /
    • 2006
  • Cesium and strontium are two important fission products and the removal/speciation of these two cations with several inorganic/bio-materials is an interesting topic to discuss. It is to be noted that inorganic materials are found to be fairly effective and efficient in the removal/speciation of these cations. Moreover, these solids are to be found promising as they show fairly good radiation and temperature stability. Hence, they play an important role in the radioactive waste management studies. However, various studies reveal that in addition to inorganic materials various biosorbents can also be employed in the removal/speciation of these ions. But the radiation and temperature stability of these bio-sorbents and dead biomasses are still the topic lying among the researchers to be investigated.

Biosorption of Heavy-metal Ions by Waste Brown Seaweed and Their Derivatives (미역 폐기물 및 미역폐기물 유도체에 의한 중금속이온의 생물흡착)

  • 박권필;김태희;김영숙;차왕석;우명우
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.153-158
    • /
    • 2001
  • The biosorption abilities of different parts of waste brown seaweeds and their derivatives to remove heavy metals (Cd, Zn, Pb, Cu, Fe, Ni, Mn) from waste were evaluated. The two parts of waste brown seaweeds (Undaria pinnatifida) were stems and sporophyls, and the brown seaweed derivatives were alginic fibers, active carbon added alginate(AC-alginate) and dealginate. The abilities of the sporophyls to adsorb the heavy metal ions were higher than those of stems, and those of alginates were slightly higher than those of dealginate in single ion solution. With decreasing the size of biosorbents, the velocity and the amount of adsorption increased. The abilities of alginate to remove the heavy metal ions increased in multi-ion solutions by adding active carbon to alginate. The selectivity of these biosorbents(alginate, AC-alginate) to lead ion was highest and to manganese ion was lowest.

  • PDF

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.

Bioadsorbents for remediation of heavy metals: Current status and their future prospects

  • Gupta, Vinod Kumar;Nayak, Arunima;Agarwal, Shilpi
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The biosorption process has been established as characteristics of dead biomasses of both cellulosic and microbial origin to bind metal ion pollutants from aqueous suspension. The high effectiveness of this process even at low metal concentration, similarity to ion exchange treatment process, but cheaper and greener alternative to conventional techniques have resulted in a mature biosorption technology. Yet its adoption to large scale industrial wastewaters treatment has still been a distant reality. The purpose of this review is to make in-depth analyses of the various aspects of the biosorption technology, staring from the various biosorbents used till date and the various factors affecting the process. The design of better biosorbents for improving their physico-chemical features as well as enhancing their biosorption characteristics has been discussed. Better economic value of the biosorption technology is related to the repeated reuse of the biosorbent with minimum loss of efficiency. In this context desorption of the metal pollutants as well as regeneration of the biosorbent has been discussed in detail. Various inhibitions including the multi mechanistic role of the biosorption technology has been identified which have played a contributory role to its non-commercialization.

Metal Biosorption by Surface-Layer Proteins from Bacillus Species

  • Allievi, Mariana Claudia;Florencia, Sabbione;Mariano, Prado-Acosta;Mercedes, Palomino Maria;Ruzal, Sandra M.;Carmen, Sanchez-Rivas
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified S-layers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of $Ca^{2+}$ and $Zn^{2+}$, but not of $Cd^{2+}$, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of S-layer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.

Biosorption Characteristics of Arsenate by Chemically Modified Activated Sludge (폐 활성슬러지의 화학적 개질을 통한 비소의 생물흡착 특성)

  • Lee, Sang-Min;Kim, Dong-Wook
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.579-585
    • /
    • 2005
  • Cheap and environmental sound biosorbent was made for the adsorption of arsenate using an waste activated sludge. The biosorbents were methylated in 9hours and 24 hours respectively for the better adsorption of arsenate. The amount adsorbed of arsenate(V) increased with increasing methylation time. The specific arsenate adsorption was 0.06mmol As(V)/g biomass when the biosorbent was methylated in 24 hours. The methylated biosorbents were also studied with pH 5, 7 and 9. The pH of the solution affect the amount of adsorption of arsenate of the biosorbent even though it was methylated. The specific arsenate adsorption of the biosorbent at pH 5 was best and it was three times greater than the amount of arsenate adsorbed at pH 9.

Biosorption and Desorption Characteristics of Heavy metal ion in Aqueous Solution by Chlorophyll (엽록체를 이용한 수중에서의 중금속 흡착 및 탈착 특성)

  • 연익준;신택수;이명선;주소영;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 1999
  • According to the fact that algae, which is usually used as a biosorbent, contains chlorophyll, we used the chlorophyll as an adsorbent. In this study, chlorophyll is immobilized by agar, which was made of platan, oak, ginkgo and pine. We investigated the removing capacity of biosorbents to toxic heavy metals (Pb, CU, Cd, Zn) in the single ion solution. Then the experimental parameters were pH, reaction time and concentration of heavy metal ions.The optimum conditions for the adsorption of heavy metals were as follows : pH range was 4~5, reaction time was 40mon, and the highest ratio of the removing rate was 50~70 ppm. The order of the amount of Pb, Cu and Cd removed was specified as oak > ginkgo > pine > platan in these conditions and as pine > ginkgo > oak > platan at Zn. Fro the results of the desorption experiments, we found that the heavy metal with the highest ratio of desorption in the single ion adsorbent was Cu.

  • PDF

Surface Display of $Poly(His)_n$ on the Escherichia coli using OmpC as Surface Anchoring Motif

  • Choe, Jong-Hyeon;Xu, Zhaohui;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.523-526
    • /
    • 2000
  • A novel cell surface display system was developed by employing the Escherichia coli outer membrane protein C (OmpC) as an anchoring motif. Poly-histidine (poly-His) peptides of 19, 32, 45, 84, and 162 amino acids (aa) could be successfully displayed by inserting them into the seventh exposed loop(L7) of OmpC. Recombinant cells displaying poly-His of 19, 32, 45, and 84 aa could absorb 18.9, 23.9, 26.1, and 32.0 ${\mu}mol$ of $Cd^{2+}$ per gram cell dry weight, respectively and therefore, would be useful as the biosorbents of heavy metals.

  • PDF

Characteristics of Lead Biosorption by Biosorbents of Marine Brown Algae (해양 갈조류를 생물흡착제로 이용한 납흡착 특성 연구)

  • 이민규;서정대
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.531-539
    • /
    • 1997
  • Lead sorption performances by biomass of nonliving, dried marine brown algae Undaria phnaunda, Hlzikia hsyormls. and Sugassum fulvellum used as biosorbent materials were investigated. As the amount of biosorbent materials added was increased, the lead removal by biosorbent materials Increased but the lead biosorption capacities decreased. However, with increasing Initial lead concentration the lead biosorption capacities by the biosorbent materials Increased but lead removal efficiencies decreased. In the range of Initial lead concentration(Co) 10-500 mg/L the lead biosorption capacities and removal efficiencies by the biosorbent materials Increased with increasing pH. Among the biosorbent materials used in this study, the lead biosorption capacities decreased in the following sequence: U. plilnaunda > H. fusiformis > S. fulvellum. The lead biosorption by biosorbent materials were expressed by the Langmuir Isotherm better than the Freundlich Isotherm. The biosorption rate could be expressed by the first order reaction rate equation for initial lead concentration like that rad : 0.288Co for U. phanda, rad = 0.255Co for H. fusiformis, and rad : 0.161Co for S. fulvellum. Key words : Lead, biosorption, biosorbent, Undaria pinnatinda, Hiztkia fusiformis, Sargassum fulvellum, Langmuir isotherm, Freundlich isotherm, biosorption rate.

  • PDF

A Comparative Study for Removal of Mercury and Lead by Microorganisms (미생물흡착을 이용한 수은과 납의 제거에 관한 비교 연구)

  • 서정호;서명교;곽영규;강신묵;노종수;이국의;최윤찬
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.98-103
    • /
    • 1998
  • A study on the removal of mercury and lead by microorganisms, Saccharomyces cerevisiae and Aureobasidium pullulans, was performed, in which the comparison of adsorption model between these two heavy metals was done. The amounts of mercury removed were more than those of lead in both microorganisms. In case of mercury, the adsorption isotherm of S. cerevisiae was accorded with Langmuir model but A. pullulans was followed to Freundlich model. In the case of lead, however, the adsorption isotherm had opposite results. The adsorption rate of mercury to S. cerevisiae was faster than that of A. pullulans, but in the case of lead, it revealed contrary results. It seems, therefore, that the type of microorganisms used as biosorbents should be selected differently with the type of heavy metals removed for applying these to real adsorption process.

  • PDF