• Title/Summary/Keyword: Biosignal Monitoring

Search Result 30, Processing Time 0.023 seconds

Development of Individually Adapted Electromagnetic Therapy System in Incontinence (환자 맞춤형 전자기장 요실금 치료 시스템 개발)

  • Noh, Si-Cheol;Kang, Kyu-Hong;Lee, Jeong-Seok;Min, Kwon-Sik;Kwon, Jang-Woo;Choi, Heung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.51-59
    • /
    • 2008
  • Incontinence is the urination disorder as the leakage of urine without her own volition and the woman's representative disease which reduce the life quality. The electromagnetic therapy has high possibility of development cause it has no needs of operant exercise, no arousing of shame and impossibility of infection. But, it has improvement points such as uniformity of the treatment protocol, patient dependance and absent of patient monitoring system. With these demands, the system which stimulate the pelvic flaw muscle with electromagnetic and monitoring the patient status during the therapy is proposed, in this study. And individually adapted electromagnetic therapy system for incontinence patient is also suggested. The proposed system consisted of electromagnetic generation device, cooling device, treating chair, patient monitoring device with pulsation and control software. The simulation for high power system and evaluation confirm was performed. With the development of control software, the convenience of using and maintenance are ensured and the patient adapted therapy protocol is applied. The developed patient adapted electromagnetic therapy system with monitoring device is regarded as the patient affinitive treating method by reducing the riskiness, improving the efficiency with patterned protocol and pre/post therapy. These results, in this study, can bring the safe and organized treatment method to incontinence patients and can lead the variable study for electromagnetic therapy in incontinence.

The Effect of Communication Distance and Number of Peripheral on Data Error Rate When Transmitting Medical Data Based on Bluetooth Low Energy (저 전력 블루투스 기반으로 의료데이터 전송 시 통신 거리와 연동 장치의 수가 데이터 손실률에 미치는 영향)

  • Park, Young-Sang;Son, ByeongJin;Son, Jaebum;Lee, Hoyul;Jeong, Yoosoo;Song, Chanho;Jung, Euisung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.259-267
    • /
    • 2021
  • Recently, the market for personal health care and medical devices based on Bluetooth Low Energy(BLE) has grown rapidly. BLE is being used in various medical data communication devices based on low power consumption and universal compatibility. However, since data errors occurring in the transmission of medical data can lead to medical accidents, it is necessary to analyze the causes of errors and study methods to reduce data error. In this paper, the minimum communication speed to be used in medical devices was set to at least 800 byte/sec based on the wireless electrocardiography regulations of the Ministry of Food and Drug Safety. And the data loss rate was tested when data was transmitted at a speed higher than 800 byte/sec. The factors that cause communication data error were classified, and the relationship between each factor and the data error rate was analyzed through experiments. When there were two or more activated peripherals connected to the central, data error occurred due to channel hopping and bottleneck, and the data error rate increased in proportion to the communication distance and the number of activated peripherals. Through this experiment, when the BLE is used in a medical device that intermittently transmits biosignal data, the risk of a medical accident is predicted to be low if the number of peripherals is 3 or less. But, it was determined that BLE would not be suitable for the development of a biosignal measuring device that must be continuously transmitted in real time, such as an electrocardiogram.

Implementation of Service Model to Exchange of Biosignal Information based on HL7 Fast Health Interoperability Resources for the hypertensive management (고혈압 관리를 위한 헬스레벨 7 FHIR 기반 생체정보 교환 서비스 모델 구현)

  • Cho, Hune;Won, Ju Ok;Hong, Hae Sook;Kim, Hwa Sun
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.21-30
    • /
    • 2014
  • Hypertension is one of the major causes of death in the world as it is related with cardiovascular or cerebrovascular disease, so it is needed to provide continuos management for blood pressure. This study selected Health Level 7 Fast Health Interoperability Resources (HL7 FHIR) as a bio-signal data exchange service model that can provide constant blood pressure management in the rapidly growing mobile health care environment. The HL7 FHIR framework developed communicates with the IEEE 11073-10407 Personal Health Device (PHD) protocol through the bluetooth Health Device Profile (HDP) between the manager (smart phone) and the agent (hemomanometer) and acquires information about blood pressure. According to the test results, it performed its tasks successfully including hypertension patients' blood pressure monitoring, management on measured records, generation of document, or transmission of measured information. Because in the actual, clinical environment, it is possible to transmit measured information through the TCP/IP protocol, it will be needed to conduct constant research on it and vitalize it in the field of mobile health care afterwards.

The Implementation of Remote Health Monitoring System using a Mobile Platform (모바일 플랫폼을 이용한 원격 건강 감시 시스템 구현)

  • Ryu, Geun Taek;Kim, Chang Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.379-385
    • /
    • 2012
  • This paper suggests U-healthcare system for individual health management realizing the gateway, client, and Java-based network server by using the vital signal measuring system and android-based mobile platform. This study realized the vital signal measuring system based on the technology to measure the ECG, oxygen saturation, blood pressure, and respiration, etc. And all the information of measurement was transmitted to the mobile gateway using the 3-bite transmission protocol consisting of headers and data. The data transmitted to the mobile gateway was used to examine the mobile client's personal health indexes through the network server. This paper realized and tested the android-based gateway, client, and the broadcasting network server and verified their validity with simulations and actual humans. As a result, the U-healthcare system suggested was proved to be effective in managing each individual's health from short distance and long distance. And it could examine each individual's health conditions in real-time and was found to be advantageous in that it could secure the guardian's mobility.

m-Health System for Processing of Clinical Biosignals based Android Platform (안드로이드 플랫폼 기반의 임상 바이오신호 처리를 위한 모바일 헬스 시스템)

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.97-106
    • /
    • 2012
  • Management of biosignal data in mobile devices causes many problems in real-time transmission of large volume of multimedia data or storage devices. Therefore, this research paper intends to suggest an m-Health system, a clinical data processing system using mobile in order to provide quick medical service. This system deployed health system on IP network, compounded outputs from many bio sensing in remote sites and performed integrated data processing electronically on various bio sensors. The m-health system measures and monitors various biosignals and sends them to data servers of remote hospitals. It is an Android-based mobile application which patients and their family and medical staff can use anywhere anytime. Medical staff access patient data from hospital data servers and provide feedback on medical diagnosis and prescription to patients or users. Video stream for patient monitoring uses a scalable transcoding technique to decides data size appropriate for network traffic and sends video stream, remarkably reducing loads of mobile systems and networks.

A Mining-based Healthcare Multi-Agent System in Ubiquitous Environments (마이닝 기반 유비쿼터스 헬스케어 멀티에이전트 시스템)

  • Kang, Eun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2354-2360
    • /
    • 2009
  • Healthcare is a field where ubiquitous computing is most widely used. We propose a mining-based healthcare multi-agent system for ubiquitous computing environments. This proposed scheme select diagnosis patterns using mining in the real-time biosignal data obtained from a patient's body. In addition, we classify them into normal, emergency and be ready for an emergency. This proposed scheme can deal with the enormous quantity of real-time sensing data and performs analysis and comparison between the data of patient's history and the real-time sensory data. We separate Association rule exploration into two data groups: one is the existing enormous quantity of medical history data. The other group is real-time sensory data which is collected from sensors measuring body temperature, blood pressure, pulse. Proposed system has advantage that can handle urgent situation in the far away area from hospital through PDA and mobile device. In addition, by monitoring condition of patient in a real time base, it shortens time and expense and supports medical service efficiently.

Development of Smart Air Car Seat Control System for Automatic Air Conditioning using IoT Sensor (IoT 센서를 이용한 공기 자동조절 스마트 에어카시트 제어 시스템 개발)

  • Kim, Dae-Hun;Jeong, Sueun;Park, Suhyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.208-210
    • /
    • 2021
  • As the number of objects connected to the Internet increases rapidly, intelligent device development projects are gradually expanding that provide direct value to humans, away from simple monitoring functions, including sensors and communication functions, or delivery to servers.It is expected that the device will develop a technology that analyzes surrounding sensing information and changes the surrounding environment in consideration of users' preferences or safety. By establishing a biosignal measurement system in a developed product that can bring various effects using air, it will be possible to grasp the user's condition through a pattern of change in pressure distribution when seated. This paper proposes a construction system that enhances the comfort of using an air car seat through contact between a temperature measurement sensor and a user, and enables effective management of measured biosignals by linking them with an air pump control system.

  • PDF

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.

CNN-LSTM-based Upper Extremity Rehabilitation Exercise Real-time Monitoring System (CNN-LSTM 기반의 상지 재활운동 실시간 모니터링 시스템)

  • Jae-Jung Kim;Jung-Hyun Kim;Sol Lee;Ji-Yun Seo;Do-Un Jeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.134-139
    • /
    • 2023
  • Rehabilitators perform outpatient treatment and daily rehabilitation exercises to recover physical function with the aim of quickly returning to society after surgical treatment. Unlike performing exercises in a hospital with the help of a professional therapist, there are many difficulties in performing rehabilitation exercises by the patient on a daily basis. In this paper, we propose a CNN-LSTM-based upper limb rehabilitation real-time monitoring system so that patients can perform rehabilitation efficiently and with correct posture on a daily basis. The proposed system measures biological signals through shoulder-mounted hardware equipped with EMG and IMU, performs preprocessing and normalization for learning, and uses them as a learning dataset. The implemented model consists of three polling layers of three synthetic stacks for feature detection and two LSTM layers for classification, and we were able to confirm a learning result of 97.44% on the validation data. After that, we conducted a comparative evaluation with the Teachable machine, and as a result of the comparative evaluation, we confirmed that the model was implemented at 93.6% and the Teachable machine at 94.4%, and both models showed similar classification performance.

Implementation of Acceleration Sensor-based Human activity and Fall Classification Algorithm (가속도 센서기반의 인체활동 및 낙상 분류를 위한 알고리즘 구현)

  • Hyun Park;Jun-Mo Park;Yeon-Chul, Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • With the recent development of IT technology, research and interest in various biosignal measuring devices is increasing. As an aging society is in full swing, research on the elderly population using IT-related technologies is continuously developing. This study is about the development of life pattern detection and fall detection algorithm, which is one of the medical service areas for the elderly, who are rapidly developing as they enter a super-aged society. This study consisted of a system using a 3-axis accelerometer and an electrocardiogram sensor, collected data, and then analyzed the data. It was confirmed that behavioral patterns could be classified from the actual research results. In order to evaluate the usefulness of the human activity monitoring system implemented in this study, experiments were performed under various conditions, such as changes in posture and walking speed, and signal magnitude range and signal vector magnitude parameters reflecting the acceleration of gravity of the human body and the degree of human activity. was extracted. And the possibility of discrimination according to the condition of the subject was examined by these parameter values.