• 제목/요약/키워드: Biosensors

검색결과 296건 처리시간 0.028초

살모넬라균 검출을 위한 임피던스 바이오센서의 항체 고정화 방법 평가 (Evaluation of Antibody Immobilization Methods for Detection of Salmonella using Impedimetric Biosensor)

  • 김기영;문지혜;엄애선;양길모;모창연;강석원;조한근
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.254-259
    • /
    • 2009
  • Conventional methods for pathogen detection and identification are labor-intensive and take several days to complete. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella typhimurium. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on either avidin-biotin binding or self assembled monolayer (SAM) on the surface of the IME to form an active sensing layer. To evaluate effect of antibody immobilization methods on sensitivity of the sensor, detection limit of the biosensor was analyzed with Salmonella samples innoculated in phosphate buffered saline (PBS) or food extract. The impedimetric biosensor based on SAM immobilization method produced better detection limit. The biosensor could detect 107 CFU/mL of Salmonella in pork meat extract. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.

Development of piezoelectric immunosensor for the rapid detection of marine derived pathogenic bacteria, Vibrio vulnificus

  • Hong, Suhee;Jeong, Hyun-Do
    • 한국어병학회지
    • /
    • 제27권2호
    • /
    • pp.99-105
    • /
    • 2014
  • Biosensors consist of biochemical recognition agents like antibodies immobilized on the surfaces of transducers that change the recognition into a measurable electronic signal. Here we report a piezoelectric immunosensor made to detect Vibrio vulnificus. A 9MHz AT-cut piezoelectric wafer attached with two gold electrodes of 5mm diameter was used as the transducer of the QCM biosensor with a reproducibility of ${\pm}0.1Hz$ in frequency response. We have tried different approaches to immobilize antibody on the sensor chip. Concerning the orientation of antibody for the best antigen binding capacity, the antibody was immobilized by specific binding to protein G or by cross-linking through hydrazine. In addition, protein G was cross-linked on glutaraldehyde activated immine layer (PEI) or EDC/NHS activated sulfide monolayer (MPA). PEI was found to be more effective to immobilize protein G following glutaraldehyde activation than MPA. However, hydrazine chip showed a better capability to immobilize more IgG than protein G chip and a higher sensitivity. The sensor system was able to detect V. vulnificus in dose dependent manner and was able to detect bacterial cells within 5 minutes by monitoring frequency shifts in real time. The detection limit can be improved by preincubation to enrich the bacterial cell number.

Structural Control and Two-Dimensional Order of Organic Thiol Self-Assembled Monolayers on Au(111)

  • 노재근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.26-26
    • /
    • 2011
  • Self-assembled monolayers (SAMs) prepared by sulfur-containing organic molecules on metal surfaces have drawn much attention for more than two decades because of their technological applications in wetting, chemical and biosensors, molecular recognition, nanolithography, and molecular electronics. In this talk, we will present self-assembly mechanism and two-dimensional (2D) structures of various organic thiol SAMs on Au(111), which are mainly demonstrated by molecular-scale scanning tunneling microscopy (STM) observation. In addition, we will provide some idea how to control 2D molecular arrangements of organic SAMs. For instance, the formation and surface structure of pentafluorobenzenethiols (PFBT) self-assembled monolayers (SAMs) on Au(111) formed from various experimental conditions were examined by means of STM. Although it is well known that PFBT molecules on metal surfaces do not form ordered SAMs, we clearly revealed for the first time that adsorption of PFBT on Au(111) at $75^{\circ}C$ for 2 h yields long-range, well-ordered self-assembled monolayers having a $(2{\times}5\sqrt{13})R30^{\circ}$ superlattice. Benzenethiols (BT) SAMs on gold usually have disordered phases, however, we have clearly demonstrated that the displacement of preadsorbed cyclohexanethiol self-assembled monolayers (SAMs) on Au(111) by BT molecules can be a successful approach to obtain BT SAMs with long-range ordered domains. Our results will provide new insight into controlling the structural order of BT or PFBT SAMs, which will be very useful in precisely tailoring the interface properties of metal surfaces in electronic devices.

  • PDF

Novel Fabrication of Designed Silica Structures Inspired by Silicatein-a

  • Park, Ji-Hun;Kwon, Sun-Bum;Lee, Hee-Seung;Choi, In-Sung S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.557-557
    • /
    • 2012
  • Silicatein-${\alpha}$, the enzyme extracted from silica spicules in glass sponges, has been studied extensively in the way of chemistry from 1999, in which the pioneering work by Morse, D. E. - the discovery of the enzymatic hydrolysis in Silicatein-${\alpha}$ - was published. Since its reaction conditions are physiologically favored, synthesis of various materials, such as gallium oxide, zirconium oxide, and silicon oxide, was achieved without any hazardous wastes. Although some groups synthesized oxide films and particles, they have not achieved yet controlled morphogenesis in the reaction conditions mentioned above. With the knowledge of catalytic triad involved in hydrolysis of silicone alkoxide and oligomerization of silicic acid, we designed the novel peptide amphiphiles to not only form self-assembled structure, but also display similar activities to silicatein-${\alpha}$. Designed templates were able to self-assemble into left-handed helices for the peptide amphiphiles with L-form amino acid, catalyzing polycondensation of silicic acids onto the surface of them. It led to the formation of silica helices with 30-50 nm diameters. These results were characterized by various techniques, including SEM, TEM, and STEM. Given the situation that nano-bio-technology, the bio-applicable technology in nanometer scale, has been attracting considerable attention; this result could be applied to the latest applications in biotechnology, such as biosensors, lab-on-a-chip, biocompatible nanodevices.

  • PDF

물 환경 내 항생제 약물 분석을 위한 바이오센서 개발 연구 동향 (Development Trend of Biosensors for Antimicrobial Drugs in Water Environment)

  • 고은서;이혜진
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.565-572
    • /
    • 2016
  • 최근 국내 수질오염에 대한 높은 관심과 개선의 필요성이 요구되는 가운데 물 환경 속의 약물의 잔류는 인체를 포함한 생태계의 약물 내성을 일으킨다는 점에서 지속적인 모니터링의 필요성이 제기되고 있다. 특히 약물 중 큰 비율을 차지하는 항생제의 잔류는 하천을 통해 빠르게 생태계의 내성균 확산을 일으킬 수 있다는 점에서 매우 큰 위험요소라고 할 수 있다. 따라서 본 총설에서는 물 환경 속의 항생제 분석이 실시간으로 가능한 신속한 센싱 플랫폼 기반 기술을 서술하고자 하며 이와 관련한 국내/외 연구현황과 발전가능성 및 그에 따른 산업/경제적 효과에 대해 논의하고자 한다.

Rapid Detection of Salmonella enteritidis in Pork Samples with Impedimetric Biosensor: Effect of Electrode Spacing on Sensitivity

  • Kim, Gi-Young;Moon, Ji-Hea;Hahm, Bung-Kwon;Morgan, Mark;Bhunia, Arun;Om, Ae-Son
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.89-94
    • /
    • 2009
  • Frequent outbreaks of foodborne illness have been increasing the awareness of food safety. Conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Some immunological, rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella entritidis in food sample. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using a semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on neutravidin-biotin binding on the surface of the IME to form an active sensing layer. To evaluate the effect of electrode gap on sensitivity of the sensor, 3 types of sensors with different electrode gap sizes (2, 5, and $10{\mu}m$) were fabricated and tested. The impedimetric biosensor could detect $10^3\;CFU/mL$ of Salmonella in pork meat extract with an incubation time of 5 min. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.

산업용 효소로써 티로시나아제 연구의 최근 동향 (Recent Advances in Tyrosinase Research as An Industrial Enzyme)

  • 김혜린;김현미;최유성
    • KSBB Journal
    • /
    • 제29권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Tyrosinases catalyze the hydroxylation of monophenolic compounds and the conversion of o-diphenols to oquinones. The enzymes are mainly involved in the modification of tyrosine into L-3,4-dihydroxyphenyl-alanine (L-DOPA) and DOPA/DOPAquinone-drived intermolecular cross-linking, which play the key roles of pigmentation to the cells. It is ubiquitously distributed in microorganisms, plants, and animals all around the nature world. They are classified as copper- containing dioxygen activating enzymes; two copper ions are coordinated with six histidine residues in their active sites and they are distinguished as met-, deoxy-, and oxy-form depending on their oxidative states. Natural extraction and recombinant protein approaches have been tried to obtain practical amounts of the enzymes for industrial application. Tyrosinases have been widely applied to industrial and biomedical usages such as detoxification of waste water containing phenolic compounds, L-DOPA as a drug of Parkinson's disease, biomaterials preparation based on the cross-linking ability and biosensors for the detection of phenolic compounds. Therefore, this review reports the mechanism of tyrosinase, biochemical and structural features and potential applications in industrial field.

DBR 다공성 실리콘과 Host 다공성 실리콘으로 이루어진 이중 다공성 실리콘의 제조와 광학적 특성 (Preparation and Optical Characterization of DBR/Host Dual Porous Silicon Containing DBR and Host Structures)

  • 최태은;양진석;엄성용;진성훈;조보민;조성동;손홍래
    • 통합자연과학논문집
    • /
    • 제3권2호
    • /
    • pp.78-83
    • /
    • 2010
  • DBR/Host dual porous silicons containing DBR and host structure were prepared and their optical properties were characterized using Ocean Optics spectrometer. In this dual porous silicon, single porous silicon layer was used as host layer for possible biomolecule and drug materials and DBR porous silicon layer was used for signal transduction due to the recognition of molecules. Optical reflection spectrum of dual porous silicon displayed only DBR reflection but Fabry-Perot fringe pattern. DBR reflection band of dual porous silicon shifted to the shorter wavelength as the etching time of host layer increased. Cross-sectional FE-SEM image of dual porous silicon displayed a thickness of about 20 micrometer for DBR porous silicon layer. Developed etching technology could be useful to prepare DBR porous silicon which exhibited specific reflection resonance at the required wavelength and to provide an label-free biosensors and drug delivery materials.

Construction of Membrane Sieves Using Stoichiometric and Stress-Reduced $Si_3N_4/SiO_2/Si_3N_4$ Multilayer Films and Their Applications in Blood Plasma Separation

  • Lee, Dae-Sik;Choi, Yo-Han;Han, Yong-Duk;Yoon, Hyun-C.;Shoji, Shuichi;Jung, Mun-Youn
    • ETRI Journal
    • /
    • 제34권2호
    • /
    • pp.226-234
    • /
    • 2012
  • The novelty of this study resides in the fabrication of stoichiometric and stress-reduced $Si_3N_4/SiO_2/Si_3N_4$ triple-layer membrane sieves. The membrane sieves were designed to be very flat and thin, mechanically stress-reduced, and stable in their electrical and chemical properties. All insulating materials are deposited stoichiometrically by a low-pressure chemical vapor deposition system. The membranes with a thickness of 0.4 ${\mu}m$ have pores with a diameter of about 1 ${\mu}m$. The device is fabricated on a 6" silicon wafer with the semiconductor processes. We utilized the membrane sieves for plasma separations from human whole blood. To enhance the separation ability of blood plasma, an agarose gel matrix was attached to the membrane sieves. We could separate about 1 ${\mu}L$ of blood plasma from 5 ${\mu}L$ of human whole blood. Our device can be used in the cell-based biosensors or analysis systems in analytical chemistry.

Fabrication and Characterization of an OTFT-Based Biosensor Using a Biotinylated F8T2 Polymer

  • Lim, Sang-Chul;Yang, Yong-Suk;Kim, Seong-Hyun;Kim, Zin-Sig;Youn, Doo-Hyeb;Zyung, Tae-Hyoung;Kwon, Ji-Young;Hwang, Do-Hoon;Kim, Do-Jin
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.647-652
    • /
    • 2009
  • Solution-processable organic semiconductors have been investigated not only for flexible and large-area electronics but also in the field of biotechnology. In this paper, we report the design and fabrication of biosensors based on completely organic thin-film transistors (OTFTs). The active material of the OTFTs is poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) polymer functionalized with biotin hydrazide. The relationship between the chemoresistive change and the binding of avidin-biotin moieties in the polymer is observed in the output and on/off characteristics of the OTFTs. The exposure of the OTFTs to avidin causes a lowering of ID at $V_D$ = -40 V and $V_G$ = -40 V of nearly five orders of magnitude.