• Title/Summary/Keyword: Biosensor

Search Result 688, Processing Time 0.022 seconds

Combined Effects of Curcumin and (-)-Epigallocatechin Gallate on Inhibition of N-Acylhomoserine Lactone-Mediated Biofilm Formation in Wastewater Bacteria from Membrane Bioreactor

  • Lade, Harshad;Paul, Diby;Kweon, Ji Hyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1908-1919
    • /
    • 2015
  • This work investigated the potential of curcumin (CCM) and (-)-epigallocatechin gallate (EGCG) to inhibit N-acyl homoserine lactone (AHL)-mediated biofilm formation in gram-negative bacteria from membrane bioreactor (MBR) activated sludge. The minimum inhibitory concentrations (MICs) of CCM alone against all the tested bacteria were 200-350 μg/ml, whereas those for EGCG were 300-600 μg/ml. Biofilm formation at one-half MICs indicated that CCM and EGCG alone respectively inhibited 52-68% and 59-78% of biofilm formation among all the tested bacteria. However, their combination resulted in 95-99% of biofilm reduction. Quorum sensing inhibition (QSI) assay with known biosensor strains demonstrated that CCM inhibited the expression of C4 and C6 homoserine lactones (HSLs)-mediated phenotypes, whereas EGCG inhibited C4, C6, and C10 HSLs-based phenotypes. The Center for Disease Control biofilm reactor containing a multispecies culture of nine bacteria with one-half MIC of CCM (150 μg/ml) and EGCG (275 μg/ml) showed 17 and 14 μg/cm2 of extracellular polymeric substances (EPS) on polyvinylidene fluoride membrane surface, whereas their combination (100 μg/ml of each) exhibited much lower EPS content (3 μg/cm2). Confocal laser scanning microscopy observations also illustrated that the combination of compounds tremendously reduced the biofilm thickness. The combined effect of CCM with EGCG clearly reveals for the first time the enhanced inhibition of AHL-mediated biofilm formation in bacteria from activated sludge. Thus, such combined natural QSI approach could be used for the inhibition of membrane biofouling in MBRs treating wastewaters.

Monitoring of Environmental Arsenic by Cultures of the Photosynthetic Bacterial Sensor Illuminated with a Near-Infrared Light Emitting Diode Array

  • Maeda, Isamu;Sakurai, Hirokazu;Yoshida, Kazuyuki;Siddiki, Mohammad Shohel Rana;Shimizu, Tokuo;Fukami, Motohiro;Ueda, Shunsaku
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1306-1311
    • /
    • 2011
  • Recombinant Rhodopseudomonas palustris, harboring the carotenoid-metabolizing gene crtI (CrtIBS), and whose color changes from greenish yellow to red in response to inorganic As(III), was cultured in transparent microplate wells illuminated with a light emitting diode (LED) array. The cells were seen to grow better under near-infrared light, when compared with cells illuminated with blue or green LEDs. The absorbance ratio of 525 to 425 nm after cultivation for 24 h, which reflects red carotenoid accumulation, increased with an increase in As(III) concentrations. The detection limit of cultures illuminated with near-infrared LED was 5 ${\mu}g$/l, which was equivalent to that of cultures in test tubes illuminated with an incandescent lamp. A near-infrared LED array, in combination with a microplate, enabled the simultaneous handling of multiple cultures, including CrtIBS and a control strain, for normalization by the illumination of those with equal photon flux densities. Thus, the introduction of a near-infrared LED array to the assay is advantageous for the monitoring of arsenic in natural water samples that may contain a number of unknown factors and, therefore, need normalization of the reporter event.

Neuroprotective Effects by Nimodipine Treatment in the Experimental Global Ischemic Rat Model: Real Time Estimation of Glutamate

  • Choi, Seok-Keun;Lee, Gi-Ja;Choi, Sam-Jin;Kim, Youn-Jung;Park, Hun-Kuk;Park, Bong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Objective: Glutamate is a key excitatory neurotransmitter in the brain, and its excessive release plays a key role in the development of neuronal injury. In order to define the effect of nimodipine on glutamate release, we monitored extracellular glutamate release in real-time in a global ischemia rat model with eleven vessel occlusion. Methods: Twelve rats were randomly divided into two groups: the ischemia group and the nimodipine treatment group. The changes of extracellular glutamate level were measured using microdialysis amperometric biosensor, in coincident with cerebral blood flow (CBF) and electroencephalogram. Nimodipine (0.025 ${\mu}g$/100 gm/min) was infused into lateral to the CBF probe, during the ischemic period. Also, we performed Nissl staining method to assess the neuroprotective effect of nimodipine. Results: During the ischemic period, the mean maximum change in glutamate concentration was $133.22{\pm}2.57\;{\mu}M$ in the ischemia group and $75.42{\pm}4.22\;{\mu}M$ (p<0.001) in the group treated with nimodipine. The total amount of glutamate released was significantly different (P<0.001) between groups during the ischemic period. The %cell viability in hippocampus was $47.50{\pm}5.64$ (p<0.005) in ischemia group, compared with sham group. But, the %cell viability in nimodipine treatment group was $95.46{\pm}6.60$ in hippocampus (p<0.005). Conclusion: From the real-time monitoring and Nissl staining results, we suggest that the nimodipine treatment is responsible for the protection of the neuronal cell death through the suppression of extracellular glutamate release in the 11-VO global ischemia model of rat.

Identification of Oligosaccharides in Human Milk Bound onto the Toxin A Carbohydrate Binding Site of Clostridium difficile

  • Nguyen, Thi Thanh Hanh;Kim, Jong Woon;Park, Jun-Seong;Hwang, Kyeong Hwan;Jang, Tae-Su;Kim, Chun-Hyung;Kim, Doman
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.659-665
    • /
    • 2016
  • The oligosaccharides in human milk constitute a major innate immunological mechanism by which breastfed infants gain protection against infectious diarrhea. Clostridium difficile is the most important cause of nosocomial diarrhea, and the C-terminus of toxin A with its carbohydrate binding site, TcdA-f2, demonstrates specific abolishment of cytotoxicity and receptor binding activity upon diethylpyrocarbonate modification of the histidine residues in TcdA. TcdA-f2 was cloned and expressed in E. coli BL21 (DE3). A human milk oligosaccharide (HMO) mixture displayed binding with TcdA-f2 at 38.2 respond units (RU) at the concentration of 20 μg/ml, whereas the eight purified HMOs showed binding with the carbohydrate binding site of TcdA-f2 at 3.3 to 14 RU depending on their structures via a surface plasma resonance biosensor. Among them, Lacto-N-fucopentaose V (LNFPV) and Lacto-N-neohexaose (LNnH) demonstrated tight binding to TcdA-f2 with docking energy of −9.48 kcal/mol and −12.81 kcal/mol, respectively. It displayed numerous hydrogen bonding and hydrophobic interactions with amino acid residues of TcdA-f2.

FMN-Based Fluorescent Proteins as Heavy Metal Sensors Against Mercury Ions

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Jung, Seunho;Bae, Dong-Ho;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.530-539
    • /
    • 2016
  • Bacterial light-oxygen-voltage-sensing photoreceptor-derived flavin mononucleotide (FMN)-based fluorescent proteins act as a promising distinct class of fluorescent proteins utilized for various biomedical and biotechnological applications. The key property of its independency towards oxygen for its chromophore maturation has greatly helped this protein to outperform the other fluorescent proteins such as GFP and DsRed for anaerobic applications. Here, we describe the feasibility of FMN-containing fluorescent protein FbFP as a metal-sensing probe by measuring the fluorescence emission changes of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the mercury-sensing ability of FbFP protein and the possible amino acids responsible for metal binding. A ratiometric approach was employed here in order to exploit the fluorescence changes observed at two different emission maxima with respect to Hg2+ at micromolar concentration. The engineered variant FbFPC56I showed high sensitivity towards Hg2+ and followed a good linear relationship from 0.1 to 3 μM of Hg2+. Thus, further engineering with a rational approach would enable the FbFP to be developed as a novel and highly selective and sensitive biosensor for other toxic heavy metal ions as well.

A New Methodology of Measuring Water Toxicity using Sulfur Oxidizing Bacteria (황산화미생물을 이용한 새로운 수(水)중 생태독성탐지 방법)

  • Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.555-562
    • /
    • 2010
  • For the rapid and reliable detection of toxic compounds in water, a novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed. The methodology exploits the ability of SOB to oxidize elemental sulfur to sulfuric acid in the presence of oxygen. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. Using a synthetic stream water (EC=0.12 mS/cm and pH=7.2), the baseline steady-state EC and pH values were 0.5~1.2 mS/cm and ~2.5 over 7 days of testing at HRT 30 minutes. When nitrite compounds were added to the system, the effluent EC decreased and the pH increased due to the inhibition of the SOB. Optimum HRT was 30 min and this HRT could be decresed by using smaller sulfur particles.

The Effect of Extracellular Glutamate Release on Repetitive Transient Ischemic Injury in Global Ischemia Model

  • Lee, Gi-Ja;Choi, Seok-Keun;Eo, Yun-Hye;Kang, Sung-Wook;Choi, Sam-Jin;Park, Jeong-Hoon;Lim, Ji-Eun;Hong, Kyung-Won;Jin, Hyun-Seok;Oh, Berm-Seok;Park, Hun-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.23-26
    • /
    • 2009
  • During operations, neurosurgeons usually perform multiple temporary occlusions of parental artery, possibly resulting in the neuronal damage. It is generally thought that neuronal damage by cerebral ischemia is associated with extracellular concentrations of the excitatory amino acids. In this study, we measured the dynamics of extracellular glutamate release in 11 vessel occlusion(VO) model to compare between single occlusion and repeated transient occlusions within short interval. Changes in cerebral blood flow were monitored by laser-Doppler flowmetry simultaneously with cortical glutamate level measured by amperometric biosensor. From real time monitoring of glutamate release in 11 VO model, the change of extracellular glutamate level in repeated transient occlusion group was smaller than that of single occlusion group, and the onset time of glutamate release in the second ischemic episode of repeated occlusion group was delayed compared to the first ischemic episode which was similar to that of single 10 min ischemic episode. These results suggested that repeated transient occlusion induces less glutamate release from neuronal cell than single occlusion, and the delayed onset time of glutamate release is attributed to endogeneous protective mechanism of ischemic tolerance.

Performance Analysis of Asynchronous 2.5 Gbps / 622Mbps Optical Subscriber Network with Manchester coded Downstream and NRZ upstream re-modulation (맨체스터 부호로 코딩된 하향신호의 재변조를 이용한 비동기 2.5 Gbps / 622 Mbps 광가입자 망의 성능 분석)

  • Park, Sang-Jo;Kim, Bong-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.143-147
    • /
    • 2009
  • We propose an asymmetrical 2.5 Gbps / 622 Mbps bidirectional optical subscriber network with Manchester coded downstream and NRZ (Non-Return-to-Zero) upstream remodulation. The proposed system has important characteristics in the optical network unit (ONU): it does not require a light source or the usual control circuits such as wavelength control and output power control, and it is possible to use a synchronization scheme between upstream and downstream data. We theoretically analyze BER(Bit Error Rate) performance of upstream data remodulated with Manchester coded downstream according to the types of NRZ downstream data and perform simulations with MATLAB. The BER performance and the receiver sensitivity have been improved by 3 dB by adjusting threshold levels compared to the conventional receiver. The results have shown the remodulation scheme with Manchester coded downstream could be a useful technology for asynchronous and asymmetric optical subscriber networks with low cost and simple structures.

Investigation of Feasibility of Tunneling Field Effect Transistor (TFET) as Highly Sensitive and Multi-sensing Biosensors

  • Lee, Ryoongbin;Kwon, Dae Woong;Kim, Sihyun;Kim, Dae Hwan;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.141-146
    • /
    • 2017
  • In this letter, we propose the use of tunneling field effect transistors (TFET) as a biosensor that detects bio-molecules on the gate oxide. In TFET sensors, the charges of target molecules accumulated at the surface of the gate oxide bend the energy band of p-i-n structure and thus tunneling current varies with the band bending. Sensing parameters of TFET sensors such as threshold voltage ($V_t$) shift and on-current ($I_D$) change are extracted as a function of the charge variation. As a result, it is found that the performances of TFET sensors can surpass those of conventional FET (cFET) based sensors in terms of sensitivity. Furthermore, it is verified that the simultaneous sensing of two different target molecules in a TFET sensor can be performed by using the ambipolar behavior of TFET sensors. Consequently, it is revealed that two different molecules can be sensed simultaneously in a read-out circuit since the multi-sensing is carried out at equivalent current level by the ambipolar behavior.

A Study on the Optimization of Silicon Antiresonant Reflecting Optical Waveguides (ARROW) for Integrated Optical Sensor Applications (집적광학 센서 응용에 적합한 실리콘 비공진 반사형 광도파로 최적화에 관한 연구)

  • Jung, Hong-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • We optimized the Si(substrate)/$SiO_2$(cladding)/$Si_3N_4$(antiresonant cladding)/$SiO_2$(core)/air multi-layers rib-optical waveguides of antiresonant reflecting optical waveguide (ARROW) for integrated optical biosensor structure utilizing beam propagation method (BPM). Thickness of anti-resonant cladding was derived to minimize the propagation loss and leaky field mode deeply related with evanescent mode was theoretically derived. Depth, width, refractive index and cladding thickness of anti-resonant cladding were numerically calculated into 2.3${\mu}m$, 5${\mu}m$, 1.488, and 0.11${\mu}m$ respectively to minimize propagation loss using the BPM simulation tool. Finally one- and two-dimensional propagation characteristics of ARROW was confirmed.