• Title/Summary/Keyword: Bioreactor Cultures

Search Result 102, Processing Time 0.027 seconds

Effects of Growth Regulators on Adventitious Root Growth and Eleutherosides and Chlorogenic Acid Accumulation in Air Lift Bioreactor Cultures of Eleutherococcus koreanum (생물반응기 배양에서 생장조절제에 따른 섬오갈피 부정근 증식 및 Eleutheroside와 Chlorogenic Acid 생산)

  • Ahn Jin-Kwon;Park So-Young;Lee Wi-Young;Lee Jeong-Ju
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.57-61
    • /
    • 2005
  • The influence of different growth regulators on biomass of adventitious roots and secondary metabolites accumulation in bioreactor cultures of Eleutherococcus koreanum was studied. The maximum growth of adventitious roots was observed in the presence of $2.0\;\cal{mg/L}$ IBA (6.7 g DW/L). However the productivity of eleutheroside E was not significantly different among IBA levels. High level of thidiazuron (TDZ) efficiently increased both root growth and secondary metabolites production. Especially when $0.1\;\cal{mg/L}$ TDZ was combined with $3.0\;\cal{mg/L}$ IBA, the highest eleutheroside E accumulation ($3,327{\mu}g/g $DW) was observed. When the same TDZ level was treated in combination with $5.0\;\cal{mg/L}$ IBA, both chlorogrnic acid and eleutheroside B were accumulated to maximum level. In contrast, zeatin remarkably suppressed the accumulation of both eleutheroside B and chlorogenic acid.

Kinetics and Modelling of Cell Growth and Substrate Uptake in Centella asiatica Cell Culture

  • Omar, Rozita;Abdullah, M.A.;Hasan, M.A.;Rosfarizan, M.;Marziah, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • In this study, we have conducted kinetics and modelling studies of Centella asiatica cell growth and substrate uptake, in an attempt to evaluate cell growth for a better understanding and control of the process. In our bioreactor cultivation experiment, we observed a growth rate of 0.18/day, a value only 20% higher than was seen in the shake flask cultivation trial. However, the observed maximum cell dry weight in the shake flask, 10.5g/L, was 14% higher than was achieved in the bioreactor. Ninety seven percentage confidence was achieved via the fitting of three unstructured growth models; the Monod, Logistic, and Gompertz equations, to the cell growth data. The Monod equation adequately described cell growth in both cultures. The specific growth rate, however, was not effectively predicted with the Logistic and Gompertz equations, which resulted in deviations of up to 73 and 393%, respectively. These deviations in the Logistic and Gompertz models may be attributable to the fact that these models were developed for substrate-independent growth and fungi growth, respectively.

Biological Removal of Explosive 2,4,6-Trinitrotoluene by Stenotrophomonas sp. OK-5 in Bench-scale Bioreactors

  • Oh, Kye-Heon;Lee, Myung-Seok;Chang, Hyo-Won;Kahng, Hyung-Yeel;So, Jae-Seong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 2002
  • The biological removal of 2,4,6-trinitrotoluene (TNT) was studied in a bench-scale bioreactor using a bacterial culture of strain OK-5 originally Isolated from soil samples contaminated with TNT. The TNT was completely removed within 4 days of incubation in a 2.5 L bench-scale bioreactor containing a newly developed medium. The TNT was catabolized in the presence of different supplemented carbons. Only minimal growth was observed in the killed controls and cultures that only received TNT during the incubation period. This catabolism was affected by the concentration ratio of the substrate to the biomass. The addition of various nitrogen sources produced a delayed effect for the TNT degradation. Tween 80 enhanced the degradation of TNT under these conditions. Two metabolic intermediates were detected and identified as 2-amino-4, 6-dinitrotoluene and 4-amino-2, 6-dinitrotoluene based on HPLC and GC-MS analyses, respectively. Strain OK-5 was characterized using the BIOLOG system and fatty acid profile produced by a microbial identification system equipped with a Hewlett Packard HP 5890 II gas chromatograph. As such, the bacterium was identified as a Stenotrophomonas species and designated as Stenotrophomonas sp. OK-5.

Plantlet Growth, and Leaf and Stomatal Characteristics of Alocasia amazonicaas Affected by Medium Supply Methods in Bioreactor Culture (Alocasia amazonica의 생물반응기 배양에서 배지 공급 방식이 식물체의 생장과 잎조직 및 기공의 특성에 미치는 영향)

  • Cho, Eun-A;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.117-122
    • /
    • 2006
  • Comparative studies on medium supply in bioreactors (raft, immersion and ebb and flood) have revealed that multiplication and growth of Alocasia Amazonica were greatest in the raft system, while lowest in ebb and flood system. In the raft system, the basal part of the shoots was continuously in contact with medium, which enabled a constant uptake of nutrients as well as aeration to the explants. The number and the size of leaf stomata were higher in the raft system compared with immersion and ebb&flood system. In the immersion system, plantlets were deformed and epidermal cells in leaves were irregular with a large intercellular space. The results suggested that the medium supply should be controlled properly to maintain normal and healthy plantlets during liquid cultures in bioreactors Which affects morphology and physiology Of the plantlets.

Improvement of Porcine Epidemic Diarrhea Disease Vaccine Productivity by Ammonium Ion Removal in a Carberry Type Bioreactor (Carberry Type 생물반응기에서 암모늄 이온 제거에 의한 돼지유행성설사병 바이러스 백신 생산성 증대)

  • Lee, Chang-Jin;Jeong, Yeon-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.588-593
    • /
    • 2011
  • The porcine epidemic diarrhea virus(PEDV) production yield in spinner flask cultures using Vero cells immobilized on microcarriers was improved by the selective adsorption of ammonium ions in a Carberry type bioreactor which was equipped with Phillipsite-Gismondine synthetic zeolite. Though the apparent cell growth seemed to be lower than that of control due to the aggregation of microcarriers between impeller shaft and the adsorbent, zeolite was found to not to be toxic to Vero cell, considering estimated glucose and lactate changes. Zeolite was observed to remove ammonium ions effectively in both steps of cell growth and virus production. In virus production, the virus titer with zeolite was two times higher than that without zeolite. Consequently, zeolite was found to be an ideal adsorbent for higher production of virus vaccine with the effective removal of ammonium ions.

Fed-batch Cultivation of Escherichia coli YK537 (pAET-8) for Production of phoA Promoter-controlled Human Epidermal Growth Factor

  • Wang Yonggang;Du Peng;Gan Renbao;Li Zhimin;Ye Qin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.149-154
    • /
    • 2005
  • Secretion of the expressed heterologous proteins can reduce the stress to the host cells and is beneficial to their recovery and purification. In this study, fed-batch cultures of Escherichia coli YK537 (pAET-8) were conducted in a 5-L fermentor for the secretory production of human epidermal growth factor (hEGF) whose expression was under the control of alkaline phosphatase promoter. The effects of feeding of glucose and complex nitrogen sources on hEGF production were investigated. When the fed-batch culture was conducted in a chemically de-fined medium, the cell density was 9.68 g/L and the secreted hEGF was 44.7 mg/L in a period of 60 h. When a complex medium was used and glucose was added in pH-stat mode, the secreted hEGF was improved to 345 mg/L. When the culture was fed with glucose at a constant specific rate of $0.25\;gg^{-1}h^{-1}$, hEGF reached 514 mg/L. The effects of adding a solution containing yeast extract and tryptone were further studied. Different rate of the nitrogen source feeding resulted in different levels of phosphate and acetic acid formation, thus affected hEGF expression. At the optimal feeding rate, hEGF production achieved 686 mg/L.

Ginsenoside Production and Morphological Characterization of Wild Ginseng (Panax ginseng Meyer) Mutant Lines Induced by γ-irradiation (60Co) of Adventitious Roots

  • Zhang, Jun-Ying;Bae, Tae-Woong;Boo, Kyung-Hwan;Sun, Hyeon-Jin;Song, In-Ja;Pham, Chi-Hoa;Ganesan, Markkandan;Yang, Dae-Hwa;Kang, Hong-Gyu;Ko, Suk-Min;Riu, Key-Zung;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.283-293
    • /
    • 2011
  • With the purpose of improving ginsenoside content in adventitious root cultures of Korean wild ginseng (Panax ginseng Meyer), the roots were treated with different dosages of ${\gamma}$-ray (5, 10, 25, 50, 75, 100, and 200 Gy). The growth of adventitious roots was inhibited at over 100 Gy. The irradiated adventitious roots showed significant variation in the morphological parameters and crude saponin content at 50 to100 Gy. Therefore, four mutant cell lines out of the propagation of 35 cell lines treated with 50 Gy and 100 Gy were selected on the basis of phenotypic morphology and crude saponin contents relative to the wild type control. The contents of 7 major ginsenosides ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) were determined for cell lines 1 and 3 from 100 Gy and lines 2 and 4 from 50 Gy treatments. Cell line 2 showed more secondary roots, longer length and superior growth rate than the root controls in flasks and bioreactors. Cell line 1 showed larger average diameter and the growth rate in the bioreactor was comparable with that of the control but greater in the flask cultured roots. Cell lines 1 and 2, especially the former, showed much more ginsenoside contents than the control in flasks and bioreactors. Therefore, we chose cell line 1 for further study of ginsenoside contents. The crude saponin content of line 1 in flask and bioreactor cultures increased by 1.4 and 1.8-fold, respectively, compared to the control. Total contents of 7 ginsenoside types ($Rg_1$, Re, $Rb_1$, $Rb_2$, Rc, Rf, and Rd) increased by 1.8 and 2.3-fold, respectively compared to the control. Crude saponin and ginsenoside contents in the bioreactor culture increased by about 1.4-fold compared to that the flask culture.

Large-scale Culture of Plant Cell and Tissue by Bioreactor System

  • Son, Sung-Ho;Park, Sung-Mee;Park, Seung -Yun;Kwon, Oh-Woung;Lee, Yun-Hee;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Large-scale cultures of plant cell, tissue, and organ have been achieved by using BTBB. When different sized BTBBs (5 L, 20 L, 100 L, 300 L, and 500 L) were tested for the culture of yew cells (Taxus cuspidata Sieb. et Zucc.), cell growth increment reached to 94.5% in SCV after 24 days of culture with 30% of inoculation cell density. However, there were some variations in the production of taxol and its derivatives among the BTBBs of different size. Approximate 4 ㎎/l of taxol and 84 ㎎/l of total taxanes were obtained by using a 500L BTBB after 6 weeks of culture. With a 20L BTBB, about 20,000 cuttings of virus-free potatoes (cv. Dejima) could be obtained by inoculating 128 explants and maintaining 8 weeks under 16 hr light illumination. The frequency of ex vitro rooting of the cuttings revealed as more than 99% under 30% shade. By incorporating two-stage culture process consisting of multiple bulblet formation in solid medium and bulblet development in liquid medium, mass propagation of lily through bioreactor seemed to be possible. In the case of 'Marcopolo', the growth of mini-bulblets in BTBB was nearly 10 folds faster than that of the solid medium. Time course study revealed that maximum MAR yield of ginseng (Panax ginseng C. A. Meyer) in a 5 L and 20 L BTBB after 8 weeks of culture was 500 g and 2.2 ㎏, respectively. By cutting the MAR once and/or twice during the culture, the yield of root biomass could be increased more than 50% in fresh weight at the time of harvest. With initial inoculum of 500 g of sliced MAR in a 500 L BTBB, 74.8 ㎏ of adventitious root mass was obtained after 8 weeks of culture. The average content of total ginseng saponin obtained from small-scale and/or pilotscale BTBBs was approximately 1% per gram dry weight. Based on our results, we suggest that large-scale cultures of plant cell, tissue, and organ using BTBB system should be quite a feasible approach when compared with conventional method of tissue culture.

  • PDF

Effect of Dissolved Oxygen on the Production of Epothilone in Bioreactor Cultures Sorangium cellulosum (Sorangium cellulosum의 생물반응기 배양에서 용존산소가 epothilone의 생산에 미치는 영향)

  • Park, Su-Jeong;Han, Se-Jong;Kim, Byung-Woo;Sim, Sang-Jun
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 2009
  • The biological production of a potent anticancer agent, epothilone, by Sorangium cellulosum was carried out using flask and fermentor cultures. Soluble starch was selected as the main carbon source and the concentrations of lactose and yeast extract were optimized at 4 and 0 g/L, respectively, when using the flask cultures. In the fermentor cultures, the cells were cultivated at a high DO level of more than 80% of air saturation in the growth stage and then the DO level was controlled at about 50, 20 or 1-2% when the carbon source was exhausted. The epothilone production increased with decreasing DO level after the exhaustion of the carbon source, and the maximum concentration of epothilone was 5.4 mg/L. It was found that the DO level had significant regulation effects on the epothilone production.