• Title/Summary/Keyword: Biophysical measurements

Search Result 24, Processing Time 0.023 seconds

Development of a Chinese cabbage model using Microsoft Excel/VBA (엑셀/VBA를 이용한 배추 모형 제작)

  • Moon, Kyung Hwan;Song, Eun Young;Wi, Seung Hwan;Oh, Sooja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.228-232
    • /
    • 2018
  • Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

Study of Interaction of Native DNA with Iron(III)-(2,4-Dihydroxysalophen)chloride (천연 DNA와 2,4-디히드록시살로펜-염화철(III)과 의 상호작용 연구)

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.573-578
    • /
    • 2010
  • In this study, iron(III)-2,4-dihydroxysalophen chloride (Fe(2,4-DHSalophen)Cl), has been synthesized by combination of 2,4-dihydroxysalophen (2,4-DHSalophen) with $FeCl_2$ in a solvent system. This complex combination was characterized using UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and Fe(2,4-DHSalophen)Cl, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of Fe(2,4-DHSalophen)Cl with ct-DNA was found to be $(1.6{\pm}0.2){\times}10^3\;M^{-1}$. The fluorescence study represents the quenching effect of Fe(2,4-DHSalophen)Cl on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of Fe(2,4-DHSalophen)Cl concentration. Thermal denaturation experiments represent the increasing melting temperature of DNA (about $4.3^{\circ}C$) due to binding of Fe(2,4-DHSalophen)Cl. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.

Standardization of Hydration in the Stratum Corneum Using by Polyols (폴리올을 이용한 각질층 수분량 측정의 표준화 연구)

  • Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.2
    • /
    • pp.113-119
    • /
    • 2015
  • The measurement of hydration level in the surface layer of the skin, stratum corneum (SC), gives important information on the biophysical properties and function of the skin barrier such as softness, flexibility, and healthiness of the skin. But it is difficult to measure a consistent hydration level from a sample to another sample due to individual variations and environmental changes. The aim of this study was to evaluate objective hydration after using various products in the SC. The SC Hydration was measured by capacitance (Corneometer$^{(R)}$, C+K, Germany) on the ventral site of forearm from 40 healthy volunteers. The skin surface was chronologically measured immediately after application of the test products and 3 and 6 hours later. We analyzed the averages of five measurements of each site and used the hydration increase rate for correction on untreated site variation. We found that most polyols including glycerol and butylenes glycol influenced directly the hydration increase rate in the SC previously. In this study, glycerol was used to prepare the standard products from 0 to 20 percents and applied to the same volunteers. The individual standard curve showed linear relation to glycerol concentrations. Based on the the standard curve, hydration of SC was converted into hydration increase rate to glycerol concentrations. The converted glycerol concentrations of products were repetitive and reproducible. In addition, the individual standard curve was used to relate the skin type of each individual. These results suggest that the hydration of the SC standardized regardless of external variation and individual skin condition can explain detailed skin state variation. Further studies will be conducted with other ingredients such as surfactants, lipids and aqueous materials, and with other methods for noninvasive measurement.

Estimation of Wheat Growth using a Microwave Scatterometer (마이크로파 산란계를 이용한 밀 생육 추정)

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyungdo;Jang, Soyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.23-31
    • /
    • 2013
  • Microwave remote sensing can help monitor the land surface water cycle and crop growth. This type of remote sensing has great potential over conventional remote sensing using the visible and infrared regions due to its all-weather day-and-night imaging capabilities. In this paper, a ground-based multi-frequency (L-, C-, and X-band) polarimetric scatterometer system capable of making observations every 10 min was developed. This system was used to monitor the wheat over an entire growth cycle. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. Backscattering coefficients for the crop growing season were compared with biophysical measurements. Backscattering coefficients for all frequencies and polarizations increased until dat of year 137 and then decreased along with fresh weight, dry weight, plant height, and vegetation water content (VWC). The range of backscatter for X-band was lower than for L- and C-band. We examined the relationship between the backscattering coefficients of each band (frequency/polarization) and the various wheat growth parameters. The correlation between the different vegetation parameters and backscatter decreased with increasing frequency. L-band HH-polarization (L-HH) is best suited for the monitoring of fresh weight (r=0.98), dry weight (r=0.96), VWC (r=0.98), and plant height (r=0.96). The correlation coefficients were highest for L-band observations and lowest for X-band. Also, HH-polarization had the highest correlations among the polarization channels (HH, VV and HV). Based on the correlation analysis between backscattering coefficients in each band and wheat growth parameters, we developed prediction equations using the L-HH based on the observed relationships between L-HH and fresh weight, dry weight, VWC and plant height. The results of these analyses will be useful in determining the optimum microwave frequency and polarizations necessary for estimating vegetation parameters in the wheat.