• Title/Summary/Keyword: Biophysical measurement

Search Result 22, Processing Time 0.025 seconds

Microfluidic Device for Ultrasound Image Analysis based on 3D Printing (초음파 영상 분석을 위한 3D 프린팅 기반 미세유체소자)

  • Kang, Dongkuk;Hong, Hyeonji;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • For the measurement of biophysical properties related with cardiovascular diseases (CVD), various microfluidic devices were proposed. However, many devices were monitored by optical equipment. Ultrasound measurement to quantify the biophysical properties can provide new insights to understand the cardiovascular diseases. This study aims to check feasibility of microfluidic device for ultrasound image analysis based on 3D printer. To facilitate acoustic transmission, agarose solution is poured around 3D mold connected with holes of the acrylic box. By applying speckle image velocimetry(SIV) technique, flow information in the bifurcated channel was estimated. Considering that ultrasound signal amplitude is determined by red blood cell (RBC) aggregation, RBC aggregation in the bifurcated channel can be estimated through the analysis of ultrasound signal. As examples of microfluidic device which mimic the CVD model, velocity fields in microfluidic devices with stenosis and aneurysm were introduced.

Purinoceptor and Intracellular $Ca^{2+}$ Regulation in Rat Prostate N euronencocrine Cells

  • Kim, Jun-Hee;Nam, Joo-Hyun;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.45-45
    • /
    • 2002
  • Extracellular ATP regulates a wide range of cellular function including the growth of prostate gland. Purinoceptors (ATP receptors) are divided into P2X (ligand-gated ion channels) and P2Y (G-protein-coupled receptor) subfamilies. In the present study, we investigated the types of purinoceptors in rat prostate neuroendocrine (RPNE) cells using whole-cell patch clamp technique, intracellular $Ca^{2+}$ measurement and RT-PCR analysis.(omitted)d)

  • PDF

Dynamic Quasi-Elastic Light Scattering Measurement of Biological Tissue

  • Youn, Jong-In;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.169-173
    • /
    • 2007
  • During laser irradiation, mechanically deformed cartilage undergoes a temperature dependent phase transformation resulting in accelerated stress relaxation. Clinically, laser-assisted cartilage reshaping may be used to recreate the underlying cartilaginous framework in structures such as ear, larynx, trachea, and nose. Therefore, research and identification of the biophysical transformations in cartilage accompanying laser heating are valuable to identify critical laser dosimetry and phase transformation of cartilage for many clinical applications. quasi-elastic light scattering was investigated using Ho : YAG laser $(\lambda=2.12{\mu}m\;;\;t_p\sim450{\mu}s)$ and Nd:YAG Laser $(\lambda=1.32{\mu}m\;;\;t_p\sim700{\mu}s)$ for heating sources and He : Ne $(\lambda=632.8nm)$ laser, high-power diode pumped laser $(\lambda=532nm)$, and Ti : $Al_2O_3$ femtosecond laser $(\lambda=850nm)$ for light scattering sources. A spectrometer and infrared radiometric sensor were used to monitor the backscattered light spectrum and transient temperature changes from cartilage following laser irradiation. Analysis of the optical, thermal, and quasi-elastic light scattering properties may indicate internal dynamics of proteoglycan movement within the cartilage framework during laser irradiation.

A Study of Skin Biophysical Parameters and Biomarkers related to the Anatomical Site and Age in Korean Women (한국 여성의 피부 부위 및 연령에 따른 피부 측정 인자와 생물 인자 연구)

  • Cho, Seok-Cheol;Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.413-420
    • /
    • 2015
  • The skin is one of the largest organs in our body and participates in many of the human organism's physiological and pathological events. Skin function were known for self-maintenance and self-repair, mechanical and chemical stress protection, protection against UV and environmental pathogenic micro-organisms, production of vitamin D, and social and psychological function through the physical aspect. The aim of this study was to evaluate the variation of biophysical parameters and to find relation with skin biomarkers in different anatomical site and age in Korean women. About 70 healthy volunteers in age range 20 to 49 were participated in this test. Test areas were the forearms and the cheek. Investigation to determine biophysical parameters on human skin, was carried out using various non-invasive methods. For analysis to skin biomarkers, we studied to examine various biomarkers for the quantitative determination of cortisol, fibronectin, keratin-1, 10, and 11, involucrin, and keratin-6 in human face and forearm. And we measured to skin biophysical parameters for skin anatomical site and age difference with non-invasive methods. As results of measuring site, some parameters were have following significant difference, stratum corneum hydration, trans epidermal water loss and skin color (L and a value). As results of age difference, skin colors were had only significant difference with age. For cortisol, keratin-6, fibronectin, keratin-1, 10, 11 contents, there were no significant difference in age and site. However, involucrin level in the cheeks were the highest for age group 30 ~ 39 compared to other age groups. These results suggest that in individual skin condition may explain detailed skin state variation.

Cellular Force Measurement for Force Feedback-Based Biomanipulation (힘반향 기반의 바이오매니퓰레이션을 위한 세포 조작력 측정)

  • Kim, Duk-Ho;Kim, Byung-Kyu;Yoon, Seok;Kang, Hyun-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.237-240
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular farce sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at several tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

  • PDF

POST-LAUNCH RADIOMETRIC CALIBRATION OF KOMPSAT2 HIGH RESOLUTION IMAGE

  • Yoon, Jong-Suk;Lee, Kyu-Sung;Chi, Jun-Hwa;Lee, Dong-Han
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.402-405
    • /
    • 2006
  • Radiometric calibration of optical image data is necessary to convert raw digital number (DN) value of each pixel into a physically meaningful measurement (radiance). To extract rather quantitative information regarding biophysical characteristics of the earth surface materials, radiometric calibration is often essential procedure. A sensor detects the radiation of sunlight interacted atmospheric constituents. Therefore, the amount of the energy reaching at the sensor is quite different from the initial amount reflected from the surface. To achieve the target reflectance after atmospheric correct, an initial step is to convert DN value to at-sensor radiance. A linear model, the simplest radiometric model, is applied to averaged spectral radiance for this conversion. This study purposes to analyze the sensitivity of several factors affecting on radiance for carrying out absolute radiometric calibration of panchromatic images from KOMPSAT2 launched at July, 2006. MODTRAN is used to calculate radiance at sensor and reflectance of target is measured by a portable spectro-radiometer at the same time the satellite is passing the target for the radiometric calibration. As using different contents of materials composing of atmosphere, the differences of radiance are investigated. Because the spectral sensitivity of panchromatic images of KOMPSAT2 ranges from 500 to 900 nm, the materials causing scattering in visible range are mainly considered to analyze the sensitivity. According to the verified sensitivity, direct measurement can be recommenced for absolute radiometric calibration.

  • PDF

Cellular Force Sensing for Force Feedback-Based Biological Cell Injection (힘 피드백 기반의 세포조작을 위한 세포막 침습력 측정)

  • Kim, Deok-Ho;Yun, Seok;Kang, Hyun-Jae;Kim, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2079-2084
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular force sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

Comment on "Estimation of Net Radiation in Three Different Plant Functional Types in Korea" (한국의 세 개의 다른 식생기능형태에서의 순복사 추정 논문에 대한 의견)

  • Kang, Min-Seok;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.3
    • /
    • pp.118-122
    • /
    • 2009
  • Net Radiation ($R_N$) is the major driving force for biophysical and biogeochemical processes in the terrestrial ecosystems, which is one of the most critical variables in both measurement and modeling. Despite its importance, there are only 10 weather stations conducting $R_N$ measurements among the 544 stations operated by Korea Meteorological Administration (KMA; KMA, 2008). The measurement of incoming shortwave radiation ($R_S{\downarrow}$) is, however, conducted at 22 stations while that of sunshine duration is conducted at all the manned stations. In this context, the recent research for estimating $R_N$ using $R_S{\downarrow}$ in Korean peninsula by Kwon (2009) is of great worth. The author used a linear regression and the radiation balance methods. We generally agree with the author that, in terms of simplicity and practicality, both methods show reliable applicability for estimating $R_N$. We noted, however, that the author's experimental method and analysis need some clarification and improvement, that are addressed in the following perspectives: (1) the use of daily integrated data for regression, (2) the use of measured albedo, (3) the use of linear coefficients for whole year data, (4) methodological improvement, (5) the use of sunshine duration, and (6) the error assessment.

Development of a Fusion Vegetation Index Using Full-PolSAR and Multispectral Data

  • Kim, Yong-Hyun;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.547-555
    • /
    • 2015
  • The vegetation index is a crucial parameter in many biophysical studies of vegetation, and is also a valuable content in ecological processes researching. The OVIs (Optical Vegetation Index) that of using multispectral and hyperspectral data have been widely investigated in the literature, while the RVI (Radar Vegetation Index) that of considering volume scattering measurement has been paid relatively little attention. Also, there was only some efforts have been put to fuse the OVI with the RVI as an integrated vegetation index. To address this issue, this paper presents a novel FVI (Fusion Vegetation Index) that uses multispectral and full-PolSAR (Polarimetric Synthetic Aperture Radar) data. By fusing a NDVI (Normalized Difference Vegetation Index) of RapidEye and an RVI of C-band Radarsat-2, we demonstrated that the proposed FVI has higher separability in different vegetation types than only with OVI and RVI. Also, the experimental results show that the proposed index not only has information on the vegetation greenness of the NDVI, but also has information on the canopy structure of the RVI. Based on this preliminary result, since the vegetation monitoring is more detailed, it could be possible in various application fields; this synergistic FVI will be further developed in the future.