• 제목/요약/키워드: Biomineralization

검색결과 76건 처리시간 0.024초

Ginsenosides Have a Suppressive Effect on c-Fos Expression in Brain and Reduce Cardiovascular Responses Increased by Noxious Stimulation to the Rat Tooth

  • Jung, Ji-Yeon;Seong, Kyung-Joo;Moon, In-Ohk;Cho, Jin-Hyoung;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.121-125
    • /
    • 2013
  • The purpose of this study is to investigate the antinociceptive effects of ginsenosides on toothache. c-Fos immunoreactive (IR) neurons were examined after noxious intrapulpal stimulation (NS) by intrapulpal injection of 2 M KCl into upper and lower incisor pulps exposed by bone cutter in Sprague Dawley rats. The number of Fos-IR neurons was increased in the trigeminal subnucleus caudalis (Vc) and the transitional region between Vc and subnucleus interpolaris (Vi) by NS to tooth. The intradental NS raised arterial blood pressure (BP) and heart rate (HR). The number of Fos-IR neurons was also enhanced in thalamic ventral posteromedial nucleus (VPMN) and centrolateral nucleus (CLN) by NS to tooth. The intradental NS increased the number of Fos-IR neurons in the nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM), hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN), central cardiovascular regulation centers. Ginsenosides reduced the number of c-Fos-IR increased by NS to tooth in the trigeminal Vc and thalamic VPMN and CLN. Naloxone, an opioid antagonist, did not block the effect of ginsenoside on the number of Fos-IR neurons enhanced by NS to tooth in the trigeminal Vc and thalamic VPMN and CLN. Ginsenosides ameliorated arterial BP and HR raised by NS to tooth and reduced the number of Fos-IR neurons increased by NS to tooth in the NTS, RVLM, hypothalamic SON, and PVN. These results suggest that ginsenosides have an antinociceptive effect on toothache through non-opioid system and attenuates BP and HR increased by NS to tooth.

Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression

  • Lee, Mi Nam;Hwang, Hee-Su;Oh, Sin-Hye;Roshanzadeh, Amir;Kim, Jung-Woo;Song, Ju Han;Kim, Eung-Sam;Koh, Jeong-Tae
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.2.1-2.16
    • /
    • 2018
  • Supplementation of mesenchymal stem cells (MSCs) at sites of bone resorption is required for bone homeostasis because of the non-proliferation and short lifespan properties of the osteoblasts. Calcium ions ($Ca^{2+}$) are released from the bone surfaces during osteoclast-mediated bone resorption. However, how elevated extracellular $Ca^{2+}$ concentrations would alter MSCs behavior in the proximal sites of bone resorption is largely unknown. In this study, we investigated the effect of extracellular $Ca^{2+}$ on MSCs phenotype depending on $Ca^{2+}$ concentrations. We found that the elevated extracellular $Ca^{2+}$ promoted cell proliferation and matrix mineralization of MSCs. In addition, MSCs induced the expression and secretion of osteopontin (OPN), which enhanced MSCs migration under the elevated extracellular $Ca^{2+}$ conditions. We developed in vitro osteoclast-mediated bone resorption conditions using mouse calvaria bone slices and demonstrated $Ca^{2+}$ is released from bone resorption surfaces. We also showed that the MSCs phenotype, including cell proliferation and migration, changed when the cells were treated with a bone resorption-conditioned medium. These findings suggest that the dynamic changes in $Ca^{2+}$ concentrations in the microenvironments of bone remodeling surfaces modulate MSCs phenotype and thereby contribute to bone regeneration.

Nitric Oxide-Induced Apoptosis of Human Dental Pulp Cells Is Mediated by the Mitochondria-Dependent Pathway

  • Park, Min Young;Jeong, Yeon Jin;Kang, Gi Chang;Kim, Mi-Hwa;Kim, Sun Hun;Chung, Hyun-Ju;Jung, Ji Yeon;Kim, Won Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.25-32
    • /
    • 2014
  • Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway.

미생물의 생체광물형성작용을 이용한 자기치유 스마트 콘크리트 개발에 관한 기초연구 (A Study on the Development of Self-Healing Smart Concrete Using Microbial Biomineralization)

  • 김화중;김성태;박성진;김사열;천우영
    • 콘크리트학회논문집
    • /
    • 제21권4호
    • /
    • pp.501-511
    • /
    • 2009
  • 이 연구는 콘크리트구조물의 유지관리 및 보전활동의 절력화와 콘크리트구조물의 장기 수명화를 목적으로 번잡한 검사나 보수작업을 필요로 하지 않고, 콘크리트에 발생하는 미세한 균열에도 수시의 점검 등이 필요 없이 미생 물의 생체광물형성작용을 이용하여 콘크리트 그 자체에 자기치유 기능을 부여하는 것에 관한 내용이다. 이 논문은 콘 크리트에 자기치유 기능을 부여하는 것에 관한 연구 중 지금까지와는 완전히 다른 방법으로 미생물의 생체광물형성작 용(biomineralization)을 이용한 자기치유 콘크리트 개발에 관한 기초적 연구로서, Sporosarcina pasteurii가 탄산칼슘을 석 출시키는 biomineralization을 이용하여 미생물이 신진대사 작용을 할 때의 탄산칼슘 석출 반응에 의한 세포 외에 다른 화합물의 생성, 탄산염광물의 석출 및 모래표면을 고화시켜 모래의 입자를 접착하는 바인더로서의 이용을 검토 하였다. 그 결과 새로운 광물 형성 및 모래표면의 고화가 어느 정도 가능한 것이 확인되었으며, 또한 유기(미생물)·무기(CaC$O_3$) 복합 구조를 가진 calcite에 의해 균열의 보수도 어느 정도 가능한 것이 기초실험을 통해 확인할 수 있었다. 따라서 콘 크리트구조물에 이러한 미생물의 신진대사 작용에 따른 생체광물형성작용의 이용은 미생물과 같이 완성된 진정한 의미 의 자기치유 콘크리트가 될 것으로 사료되며, 이러한 미생물의 적용에 따른 효과는 보수 기능뿐만 아니라 환경 문제를 배려한 새로운 재료로서의 개발로 이어져 향후 더욱 더 중요한 연구주제의 하나가 될 것이다.

광물 합성 공정의 관점에서 본 생광물화과정 및 생체모방공학 (Biomineralization and Biomimetics from the Point of Mineral Processing)

  • 이승우;장영남;박승빈
    • 한국패류학회지
    • /
    • 제26권1호
    • /
    • pp.1-18
    • /
    • 2010
  • 자연에 존재하는 생명체들은 유기-무기 성분들이 포함된 미세구조로 이루어진 계층학적으로 복잡한유-무기 나노 복합재를 합성한다. 자연에서 진행되는 유기-무기 나노복합재의 생성 및 재생 과정은 생광물화과정으로서 생물학적 환경에서 진행되는 생광물화과정의 연구는 신물질 합성에 대한 단서를 제공할 뿐만 아니라 산업적으로 중요한공정의 개발에 있어 귀중한 지침으로 활용될 수 있다. 연체동물 역시 생광물화과정을 수행하는 다른 생명체들과 마찬가지로 단백질과 다당류로 이루이진 유기매트릭스와 무기물의 상호작용을 통하여 패각을 설계하고 합성한다. 본 고찰에서는 이매패류의 패각 형성 과정 연구를 기반으로 아울러 생광물화과정 연구를 기반으로 한 소재합성과 관련된 생체모방공학 기술을 고찰하였다.

Improvement of Biomineralization of Sporosarcina pasteurii as Biocementing Material for Concrete Repair by Atmospheric and Room Temperature Plasma Mutagenesis and Response Surface Methodology

  • Han, Pei-pei;Geng, Wen-ji;Li, Meng-nan;Jia, Shi-ru;Yin, Ji-long;Xue, Run-ze
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1311-1322
    • /
    • 2021
  • Microbially induced calcium carbonate precipitation (MICP) has recently become an intelligent and environmentally friendly method for repairing cracks in concrete. To improve on this ability of microbial materials concrete repair, we applied random mutagenesis and optimization of mineralization conditions to improve the quantity and crystal form of microbially precipitated calcium carbonate. Sporosarcina pasteurii ATCC 11859 was used as the starting strain to obtain the mutant with high urease activity by atmospheric and room temperature plasma (ARTP) mutagenesis. Next, we investigated the optimal biomineralization conditions and precipitation crystal form using Plackett-Burman experimental design and response surface methodology (RSM). Biomineralization with 0.73 mol/l calcium chloride, 45 g/l urea, reaction temperature of 45℃, and reaction time of 22 h, significantly increased the amount of precipitated calcium carbonate, which was deposited in the form of calcite crystals. Finally, the repair of concrete using the optimized biomineralization process was evaluated. A comparison of water absorption and adhesion of concrete specimens before and after repairs showed that concrete cracks and surface defects could be efficiently repaired. This study provides a new method to engineer biocementing material for concrete repair.

Four Voltage-Gated Potassium Currents in Trigeminal Root Ganglion Neurons

  • Choi, Seung Ho;Youn, Chang;Park, Ji-Il;Jeong, Soon-Yeon;Oh, Won-Man;Jung, Ji-Yeon;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • 제38권1호
    • /
    • pp.13-19
    • /
    • 2013
  • Various voltage-gated $K^+$ currents were recently described in dorsal root ganglion (DRG) neurons. However, the characterization and diversity of voltage-gated $K^+$ currents have not been well studied in trigeminal root ganglion (TRG) neurons, which are similar to the DRG neurons in terms of physiological roles and anatomy. This study was aimed to investigate the characteristics and diversity of voltage-gated $K^+$ currents in acutely isolated TRG neurons of rat using whole cell patch clamp techniques. The first type (type I) had a rapid, transient outward current ($I_A$) with the largest current size having a slow inactivation rate and a sustained delayed rectifier outward current ($I_K$) that was small in size having a fast inactivation rate. The $I_A$ currents of this type were mostly blocked by TEA and 4-AP, K channel blockers whereas the $I_K$ current was inhibited by TEA but not by 4-AP. The second type had a large $I_A$ current with a slow inactivation rate and a medium size-sustained delayed $I_K$ current with a slow inactivation rate. In this second type (type II), the sensitivities of the $I_A$ or $I_K$ current by TEA and 4-AP were similar to those of the type I. The third type (type III) had a medium sized $I_A$ current with a fast inactivation rate and a large sustained $I_K$ current with the slow inactivation rate. In type III current, TEA decreased both $I_A$ and $I_K$ but 4-AP only blocked $I_A$ current. The fourth type (type IV) had a smallest $I_A$ with a fast inactivation rate and a large $I_K$ current with a slow inactivation rate. TEA or 4-AP similarly decreased the $I_A$ but the $I_K$ was only blocked by 4-AP. These findings suggest that at least four different voltage-gated $K^+$ currents in biophysical and pharmacological properties exist in the TRG neurons of rats.

Quantitative Analysis of Tooth Mineral Content by High Resolution Micro-computed Tomography

  • Song, Dae-Sung;Kim, Jung-Woo;Hwang, Hee-Su;Oh, Sin-Hye;Song, Ju Han;Kim, Il-Shin;Hwang, Yun-Chan;Koh, Jeong-Tae
    • International Journal of Oral Biology
    • /
    • 제42권4호
    • /
    • pp.155-161
    • /
    • 2017
  • Teeth and bones are highly mineralized tissues containing inorganic minerals such as calcium phosphate, and a growing number of evidences show that their mineral content is associated with many diseases. Although the quantification of mineral contents by micro-computed tomography(micro- CT) has been used in diagnosis and evaluation for treating bone diseases, its application for teeth diseases has not been well established. In this study, we attempted to estimate a usefulness of a high-resolution micro-CT in analysis of human teeth. The teeth were scanned by using the Skyscan 1172 micro-CT. In order to measure tooth mineral content, beam hardening effect of the machine was corrected with a radiopaque iodine-containing substance, iodoacetamide. Under the maximum resolution of $6.6{\mu}m$, X-ray densities in teeth and hydroxyapatite standards were obtained with Hounsfield unit (HU), and they were then converted to an absolute mineral concentration by a CT Analyzer software. In enamel layer of cusp area, the mean mineral concentration was about $2.14mg/mm^3$ and there was a constant mineral concentration gradient from the enamel surface to the dentinoenamel junction. In the dentin of middle 1/3 of tooth, the mean mineral concentration was approximately $1.27mg/mm^3$ and there was a constant mineral concentration gradient from the outer of root to the pulp side, ranging from 1.3 to $1.06mg/mm^3$. In decay region of dentin, the mineral content was gradually decreased from the intact inner side to the decayed surface. These results suggest that high-resolution micro-CT can be as a useful tool for non-invasive measurement of mineral concentration in teeth.

Biomineralization on the stalk of the eustigmatophyte Pseudocharaciopsis (Eustigmatophyceae)

  • Wujek, Daniel E.
    • ALGAE
    • /
    • 제27권2호
    • /
    • pp.135-137
    • /
    • 2012
  • The stalks of the eustigmatophyte $Pseudocharaciopsis$ $minuta$ were examined by light and scanning electron microscopy. Light microscopy revealed orange-red granules at the base of the stalk. Energy dispersive X-ray microanalysis of the bases indicated that they were mainly composed of manganese. Manganese has not been previously reported from eustigmatophytes. This study indicates that the Eustigmatophyceae needs further study into many aspects of the biology.

신규 미니어레이어에 의한 폴리다이아세틸렌 패턴상의 생체유도결정화 (Biomineralization on Polydiacetylene Patterns Deposited by Using a Novel Mini Arrayer)

  • 이원덕;이길선;안동준
    • Korean Chemical Engineering Research
    • /
    • 제48권3호
    • /
    • pp.350-354
    • /
    • 2010
  • 자연계에는 유/무기 복합막 형성시 크기와 배열이 정교하게 제어되면서 여러 무기물 결정들이 성장한다. 이와 같은 자연계의 유/무기 복합막을 인공적으로 재현하기 위한 시도가 다각적으로 이루어지고 있다. 유/무기 계면에서 생체모방 결정화의 대표적인 물질 중의 하나가 바로 탄산칼슘 결정이다. 탄산칼슘은 생체 내의 골격을 이루는 주성분이고 성장방법이 비교적 간단하여 많은 연구가 수행되어 왔다. 분자수준에서의 우수한 정돈 상태들을 지니고 있는 폴리다이아세틸렌(polydiacetylene: PDA)은 무기결정성장에 관하여 효과적인 template를 제공할 수 있다. 본 실험에서는 폴리다이아세틸렌의 패턴들을 고체기판에 동시에 증착시키기 위하여, 신규로 고안한 mini arrayer의 air/water의 계면을 이용하여 소수성 유리기판위에 PDA를 전이시켰다. 이 방법을 이용한 결정화 과정의 제어는 생체유도결정화의 매커니즘을 이해하는데 기여할 수 있을 것이다.